Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.982
Filtrar
1.
Food Chem ; 462: 141000, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241686

RESUMO

Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.


Assuntos
Solventes Eutéticos Profundos , Desenvolvimento Sustentável , Solventes Eutéticos Profundos/química , Resíduos/análise , Gerenciamento de Resíduos/métodos , Humanos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Perda e Desperdício de Alimentos
2.
Chemistry ; 30(54): e202402207, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39240026

RESUMO

The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.

3.
J Pharm Anal ; 14(9): 100951, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39291244

RESUMO

In various industries, particularly in the chemical and pharmaceutical fields, Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a unique capacity to detect and characterise complex chemicals while minimising environmental damage by minimal waste generation and reducing the need for extensive sample preparation or use of harmful reagents. This review showcases the versatility of ex situ and in situ FTIR applications for substance identification, analysis, and dynamic monitoring. Ex situ FTIR spectroscopy's accuracy in identifying impurities, monitoring crystallisation processes, and regulating medication release patterns improves product quality, safety, and efficacy. Furthermore, its quantification capabilities enable more effective drug development, dosage procedures, and quality control practices, all of which are consistent with green analytical principles. On the other hand, in situ FTIR spectroscopy appears to be a novel tool for the real-time investigation of molecular changes during reactions and processes, allowing for the monitoring of drug release kinetics, crystallisation dynamics, and surface contacts, as well as providing vital insights into material behaviour. The combination of ex situ FTIR precision and in situ FTIR dynamic capabilities gives a comprehensive analytical framework for developing green practices, quality control, and innovation in the chemical and pharmaceutical industries. This review presents the wide range of applications of ex situ and in situ FTIR spectroscopy in chemical, pharmaceutical and medical fields as an analytical green chemistry tool. However, further study is required to fully realise FTIR's potential and develop new applications that improve sustainability in these areas.

4.
Philos Trans A Math Phys Eng Sci ; 382(2282): 20230266, 2024 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-39307158

RESUMO

Hydrogen as energy vector from renewable sources and carbon dioxide as carbon source are central elements of a future sustainable interface between energy and chemistry. While often viewed merely as "substitutes" for fossil resources, the current article discusses opportunities to open new synthetic pathways and to generate novel molecular architectures for the delivery of the same or even improved functionalities expected from chemical products. Catalysis is the key science and technology in this endeavour and three general principles for the desing of catalytic systems are proposed as guidelines for fundamental research. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.

6.
Environ Res ; : 120034, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307223

RESUMO

Adsorption for uranium removal from aqueous systems has been extensively studied, due to its many advantages. However, the great costs and complexity of many sorbent preparation methods are still restricting the progress. Hence, this research aimed to introduce a novel, simple and green method for enhancing Amberlite IR-120 properties for U(VI) removal. Adsorption process parameters were evaluated by batch method and sorbent was characterized before and after uranium adsorption by FTIR, SEM and EDS analysis. The results demonstrated that sorbent was effective for U(VI) removal at pH 5, 100 mg dose with 60 mg/L of U(VI) concentration within 40 min at higher temperatures. The removal efficiency was 87.7% and process was found feasible according to thermodynamic data. Kinetic modelling showed best correlation with pseudo-second order model (r2 = 0.999) and applied isotherms could all describe investigated process suggesting a complex mechanism of U(VI) uptake. Effect of interfering ions (Pb(II), Ni(II) and Co(II)) in a concentration of 45 and 60 mg/L decreased U(VI) removal to 45%. Additionally, AAS method confirmed that used sorbent has significant affinity towards Pb(II). Desorption study revealed successful uranium recovery in up to 3 cycles of sorption/desorption. The EDS analysis revealed the uranium presence with 4.7% and FTIR analysis revealed bands characteristic for stretching vibrations of O=U=O. Proposed mechanism involved U(VI) uptake via non-covalent interactions, inter/intra-molecular hydrogen bonding and intraparticle diffusion. Techno-economic analysis showed that with used preparation method 1 g of ASP costs 0.022 $. Hence, this study offers a novel method for sorbents properties enhancements.

7.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274833

RESUMO

l-Homocysteine, formed from S-adenosyl methionine following demethylation and adenosine release, accumulates when the methionine recycling pathway and other pathways become impaired, thus leading to hyperhomocysteinemia, a biomarker in cardiovascular diseases, neurological/psychiatric disorders, and cancer. The partial oxidation of the l-homocysteine thiol group and its decarboxylation on C-alpha lead to the formation of l-homocysteinesulfinic acid (l-HCSA) and homohypotaurine (HHT), respectively. Both compounds are not readily available from commercial suppliers, which hinders the investigation of their biological activities. Herein, the chemical synthesis of l-HCSA, from l-homocystine, was the starting point for establishing the bio-based synthesis of HHT using recombinant Escherichia coli glutamate decarboxylase (EcGadB), an enzyme already successfully employed for the bio-based synthesis of GABA and its phosphinic analog. Prior to HHT synthesis, kcat (33.92 ± 1.07) and KM (38.24 ± 3.45 mM) kinetic constants were determined for l-HCSA on EcGadB. The results of our study show that the EcGadB-mediated synthesis of HHT can be achieved with good yields (i.e., 40% following enzymatic synthesis and column chromatography). Purified HHT was tested in vitro on primary human umbilical vein endothelial cells and rat cardiomyoblasts and compared to the fully oxidized analog, homotaurine (OT, also known as tramiprosate), in widespread pharmaceutical use. The results show that both cell lines display statistically significant recovery from the cytotoxic effects induced by H2O2 in the presence of HHT.


Assuntos
Escherichia coli , Glutamato Descarboxilase , Homocisteína , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Proteínas Recombinantes/metabolismo , Cinética
8.
Biofouling ; : 1-15, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319552

RESUMO

Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.

9.
Nature ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322692
11.
Curr Issues Mol Biol ; 46(9): 10112-10129, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39329955

RESUMO

p-Coumaric acid (p-CA) is a valuable compound with applications in food additives, cosmetics, and pharmaceuticals. However, traditional production methods are often inefficient and unsustainable. This study focuses on enhancing p-CA production efficiency through the heterologous expression of tyrosine ammonia-lyase (TAL) from Rhodobacter sphaeroides in Pseudomonas putida KT2440. TAL catalyzes the conversion of L-tyrosine into p-CA and ammonia. We engineered P. putida KT2440 to express TAL in a fed-batch fermentation system. Our results demonstrate the following: (i) successful integration of the TAL gene into P. putida KT2440 and (ii) efficient bioconversion of L-tyrosine into p-CA (1381 mg/L) by implementing a pH shift from 7.0 to 8.5 during fed-batch fermentation. This approach highlights the viability of P. putida KT2440 as a host for TAL expression and the successful coupling of fermentation with the pH-shift-mediated bioconversion of L-tyrosine. Our findings underscore the potential of genetically modified P. putida for sustainable p-CA production and encourage further research to optimize bioconversion steps and fermentation conditions.

12.
Heliyon ; 10(18): e37428, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309833

RESUMO

Novel research has been conducted on Aloe vera, focusing on stems fiber (agricultural waste), for the extraction of cellulosic fiber, an area lacking prior scientific exploration. This fiber is being reported for the first time in the scientific community. Aloe barbadensis Miller variety was subjected to various cultivation methods, including the application of inorganic and organic fertilizers, along with the removal of lower leaves to promote stem growth. Stem fibers were extracted using the water retting method and subsequently analyzed. The moisture content was 55.35 % and 6.99 % ash content in the fibers. The bacteriostatic analysis of Aloe vera fibers was assessed against four bacterial strains, with both ethanol and water extracts showing varying degrees of inhibition zones. The UV-Visible spectrum exhibited a distinct λ max at 247 nm in ethanol, while FT-IR analysis provided characteristic peaks at 3759, 1590, 1750, 1663, 1250, 564, SEM images displayed the smooth surface morphology of the fibers, and X-ray diffraction analysis indicated a high degree of crystallinity (78.67 %), suggesting a well-structured and crystalline nature. Energy dispersive X-ray (EDX) analysis was conducted to determine the elemental composition of the fibers, revealing the presence of carbon, oxygen, calcium, and copper, with carbon being the predominant element in cellulose. These results showed promising properties suggesting potential applications in textile industry as an alternative sustainable natural cellulosic fiber.

13.
Sci Rep ; 14(1): 21775, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294182

RESUMO

A selective, precise, and accurate reversed HPLC method has been developed and validated for simultaneous separation and determination of two veterinary drugs, dipyrone and hyoscine, in their combined dosage form in the presence of their official impurities, namely 4-aminoantipyrine and tropic acid, in addition to the formulated preservative: phenol. The linearity range was found to be (1.00-35.00 µg/mL) for dipyrone and (2.50-50.00 µg/mL) for hyoscine. It exhibited a satisfactory linearity regression R (0.9999) for both drugs with LOD 0.22 µg/mL and 0.72 µg/mL and LOQ 0.65 µg/mL and 2.19 µg/mL for dipyrone and hyoscine, respectively. Additionally, the two cited drugs were also determined in the presence of dipyrone active metabolite 4-aminoantipyrine using diclofenac as an internal standard in bovine urine. The linearity range was found to be (15-75 µg/mL) for dipyrone, (2.5-60 µg/mL) for hyoscine, and (2.5-60 µg/mL) for 4-aminoantipyrine with linearity regression R (0.9999-0.9998). The LLOQ (15, 2.5, 2.5 µg/mL), LQC (45, 7.5, 7.5 µg/mL), MQC (55, 25, 25 µg/mL), and HQC (60, 50 50 µg/mL) were determined for dipyrone, hyoscine and 4-aminoantipyrine, respectively. UV detection was carried out at 220 nm. The method was validated according to the ICH guidelines, as well as according to FDA guidelines for determining both drugs in bioanalytical matrices and both proved accuracy and precision. A statistical comparison was made between the results obtained and those obtained by the reported method, showing no significant difference in accuracy and precision at p = 0.05. The suggested method was proved eco-friendly through a greenness assessment using two different tools (The analytical eco-scale scored 83, and the AGREE-Analytical Greenness Metric approach scored 0.83). The suggested method can be used in the routine work of quality control labs, screening for drug abuse, and ensuring clean sport for horse racing.


Assuntos
Dipirona , Dipirona/análise , Cromatografia Líquida de Alta Pressão/métodos , Animais , Bovinos , Monitoramento Biológico/métodos , Reprodutibilidade dos Testes , Limite de Detecção
14.
Food Chem ; 463(Pt 2): 141296, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39305667

RESUMO

Oleocanthal and oleacein are the two major secoiridoids exclusively present in extra virgin olive oil (EVOO). Both compounds exert important pharmacological activities, including anti-inflammatory, anti-tumoral, neuro- and cardiovascular protective effects. Due to their enormous potential as possible drugs the extraction of these two bioactive natural products from EVOO has been extensively investigated in the last years and is generally supported by the use of organic chemistry. It is quite difficult to produce large quantities of these two compounds, either by organic solvent extraction and purification or by chemical synthesis, and furthermore organic processes such as cleaning, defatting, and extraction of EVOO pose a threat to the environment and are potentially harmful to workers. In this work we set up a novel aqueous extraction and isolation method from EVOO by transforming oleocanthal and oleacein into two water-soluble sulfonated products. The two derived compounds, here named thiocanthal and thiocanthol, were isolated by a two-step organic free chromatographic strategy, chemically characterized, and evaluated for their inhibitory activity on cyclooxygenase (COX). The results demonstrate that thiocanthal and thiocanthol possess anti-inflammatory effect, which is comparable to their precursors and higher than the well-known non-steroidal anti-inflammatory drug ibuprofen. Computational docking studies were performed to obtain and analyse putative models of the interaction of thiocanthal and thiocanthol with COX-1 and COX-2 binding sites. Predicted binding energy values suggested that both compounds might preferentially bind COX-2, which may have a significant pharmacological impact. Therefore, thiocanthal and thiocanthol, obtained by this novel green process, are extremely interesting both as new bioactive compounds per se and as lead compounds for the development of novel non-steroidal anti-inflammatory drugs (NSAIDs).

15.
ChemSusChem ; : e202401315, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261283

RESUMO

irect Air Capture (DAC) is an emerging form of atmospheric carbon dioxide removal. Conventional DAC sorbents utilize swings in temperature and/or pressure, which are energy intensive and hinders large-scale deployment. In this work, we demonstrate a green, aqueous electrochemical DAC system that employs Alizarin Red S (ARS) as an electroactive capturing agent. The system has an estimated minimum theoretical energy requirement of 24.6 kJe/mole of CO2, demonstrated reversible electrochemical behavior over 100 cycles and 205 hours, and maintained an average coulombic efficiency of 100% with an average capacity retention of 99.8%. With a techno-economic analysis, we highlight the impact of current density and electrode surface area on levelized costs, and we describe a path to lower the cost of DAC below US$500 per tonne of CO2.

17.
Heliyon ; 10(17): e36608, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263164

RESUMO

Background: Our research presents an efficient and practical method for producing Zinc Oxide nanoparticles (ZnO NPs), which have anti-leukemic effects based on ferroptosis. Methods: The black cardamom extract was employed as a capping and reducing agent for the green synthesis. The NPs have been characterized via scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Additionally, leukemic and normal cells were exposed to ZnO NPs (25, 50, 75, 100, 150, 200, and 300 µg/mL) for 24 and 48 h. The cell vitality was then measured using the MTT test. Moreover, ferroptosis indicators were assessed via commercial testing kits, and finally, qRT-PCR and flow cytometry were used to measure gene expression and cell death. Results: The findings displayed that green synthesized ZnO NPs reduced the survival of leukemic cells, with IC50 values of 150.89 µg/ml for Nalm-6 and 101.31 µg/ml for REH cells after 48 h. The ZnO NPs increased ferroptosis by significantly increasing MDA, intracellular iron, ACSL4, ALOX15, and p53 mRNA expressions while significantly decreasing GSH and GPx activity levels and SLC7A11 and GPx4 mRNA expressions. On the other hand, ZnO NPs exhibited no toxicity toward normal cells. Conclusions: The research suggests that ZnO NPs synthesized using the green approach can induce ferroptosis in leukemic cells by disrupting redox homeostasis and increasing intracellular iron levels, potentially enhancing the benefits of anti-leukemic therapies in the future.

18.
J Biomater Sci Polym Ed ; : 1-17, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225005

RESUMO

Graphene oxide (GO) is widely used in bone tissue engineering due to its good biocompatibility and proliferation, and is often used in combination with other hydrogels, which not only reduces the cytotoxicity of GO but also improves the mechanical properties of the hydrogels. We developed injectable carboxymethyl chitosan (CMC)/hydroxyethyl cellulose (HEC)/ß-tricalcium phosphate (ß-TCP)/GO hydrogel via hydrogen bonding cross-linked between (CMC) and (HEC), also, calcium cross-linked by ß-TCP was also involved to further improvement of mechanical properties of the hydrogel, and incorporate different concentration of GO in these hydrogel systems. The characterization of the novel hydrogel was tested by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The swelling ratio and mechanical properties were investigated, the results showed that the addition of GO was able to reduce the swelling rate of hydrogels and improve their mechanical properties, with the best effect in the case of 1 mg/mL content. In vivo experimental studies showed that the hydrogel significantly promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), with the best effect at a concentration of 2 mg/mL. The results of the cellular experiments were similar. Therefore, the novel environment-friendly and non-toxic injectable CMC/HEC/ß-TCP/GO hydrogel system may have potential applications in bone tissue engineering.

19.
Beilstein J Org Chem ; 20: 2143-2151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224228

RESUMO

A one-pot three-component Biginelli synthesis of dihydropyrimidinones/thiones/selenones via acetic acid or solvent-free Yb(OTf)3-catalyzed tandem reaction of ß-ketosulfone (dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide), an appropriate urea, and arylaldehyde has been developed. The reaction proceeds with high chemo- and regioselectivity to give diverse DHPMs in reasonable yields up to 95%. Moreover, an SO2-containing analogue of anticancer drug-candidate enastron (SO2 vs C=O) was obtained by using the here reported method in gram scale. We also demonstrate the reactivity of the Biginelli product in various directions - synthesis of condensed thiazoles and tetrazoles. In silico assessment of ADMET parameters shows that most compounds meet the lead-likeness requirements. The biological profiles of new compounds demonstrate high probability levels of activity against the following pathogens/diseases: Candida albicans, Alphis gossypii, Tripomastigote Chagas, Tcruzi amastigota, Tcruzi epimastigota, Leishmania amazonensis, and Dengue larvicida.

20.
Food Chem ; 463(Pt 2): 141204, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39276551

RESUMO

A three-phase hollow-fiber liquid phase microextraction for o-phenylphenol (OPP) determination was developed. 1-octanol was employed as the organic phase, impregnated within the pores of the hollow fiber wall which was immersed in the sample solution, serving as a donor phase. OPP in the sample solution was extracted via octanol in the fiber pores into NaOH, which acted as the acceptor phase in the lumen of the fiber. The extracted OPP was then subjected to spectrophotometric detection at 712 nm using the indophenol blue reaction. The developed method showed a linear calibration curve (0.002-0.040 mg L-1) with high sensitivity (5.75 L mg-1), low limit of detection (0.31 µg L-1), and high recovery (73.6-94.8 %). Intra-day and inter-day precision at 2.1 µg L-1 OPP were 7.4 % (n = 12) and 10.9 % (n = 4) relative standard deviations, respectively. The determined OPP in various canned drinks was found to be between 2.0 and 17.8 µg L-1 using the developed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA