Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241483

RESUMO

The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.

2.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878206

RESUMO

A bio-derived power harvester from mechanical vibrations is here proposed. The harvester aims at using greener fabrication technologies and reducing the dependence from carbon-based fossil energy sources. The proposed harvester consists mainly of biodegradable matters. It is based on bacterial cellulose, produced by some kind of bacteria, in a sort of bio-factory. The cellulose is further impregnated with ionic liquids and covered with conducting polymers. Due to the mechanoelectrical transduction properties of the composite, an electrical signal is produced at the electrodes, when a mechanical deformation is imposed. Experimental results show that the proposed system is capable of delivering electrical energy on a resistive load. Applications can be envisaged on autonomous or quasi-autonomous electronics, such as wireless sensor networks, distributed measurement systems, wearable, and flexible electronics. The production technology allows for fabricating the harvester with low power consumption, negligible amounts of raw materials, no rare elements, and no pollutant emissions.


Assuntos
Bactérias/metabolismo , Celulose/química , Fontes Geradoras de Energia , Eletrônica , Líquidos Iônicos/química , Polímeros/química , Vibração , Tecnologia sem Fio
3.
Materials (Basel) ; 12(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717822

RESUMO

In this paper, a micrometre thin film of molybdenum disulfide (MoS2) is characterized for thermoelectric properties. The sample was prepared through mechanical exfoliation of a molybdenite crystal. The Seebeck coefficient measurement was performed by generating a temperature gradient across the sample and recording the induced electrical voltage, and for this purpose a simple measurement setup was developed. In the measurement, platinum was utilized as reference material in the electrodes. The Seebeck value of MoS2 was estimated to be approximately -600 µV/K at a temperature difference of 40 °C. The negative sign indicates that the polarity of the material is n-type. For measurement of the thermal conductivity, the sample was sandwiched between the heat source and the heat sink, and a steady-state power of 1.42 W was provided while monitoring the temperature difference across the sample. Based on Fourier's law of conduction, the thermal conductivity of the sample was estimated to be approximately 0.26 Wm-1 K-. The electrical resistivity was estimated to be 29 Ω cm. The figure of merit of MoS2 was estimated to be 1.99 × 10-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA