RESUMO
Riboswitches are structured ribonucleic acid (RNA) segments that act as specific sensors for small molecules in bacterial metabolism. Due to the flexible nature of these highly charged macromolecules, molecular dynamics simulations are instrumental to investigating the mechanistic details of their regulatory function. In the present study, the guanidine-I riboswitch serves as an example of how atomistic simulations can shed light on the effect of ions on the structure and dynamics of RNA and on ligand binding. Relying on two orthologous crystal structures from different bacterial species, it is demonstrated how the ion setup crucially determines whether the simulation yields meaningful insights into the conformational stability of the RNA, functionally relevant residues and RNA-ligand interactions. The ion setup in this context includes diffuse ions in solution and bound ions associated directly with the RNA, in particular a triad of 2 Mg2+ ions and a K+ ion in close proximity to the guanidinium binding site. A detailed investigation of the binding pocket reveals that the K+ from the ion triad plays a decisive role in stabilizing the ligand binding by stabilizing important localized interactions, which in turn contribute to the overall shape of the folded state of the RNA.
RESUMO
Efficient and safe extraction of microRNAs (miRNAs) from biological samples is pivotal for genetic regulation studies and biotechnological applications. This study focuses on optimizing the microRNA extraction process from the plasma of common carp, a significant species in aquaculture. Recognizing the limitations and hazards of commercial extraction kits, which often employ toxic chemicals like phenol and chloroform, we sought to develop a safer and more effective alternative. Our optimized protocol utilizes guanidinium isothiocyanate (GITC) and sarkosyl, omitting hazardous substances. We explored several parameters including GITC concentration, the addition of sarkosyl, and the role of sodium chloride in enhancing miRNA yield. Our findings demonstrate that optimal conditions involve a GITC concentration of 4.2 M, a 3% sarkosyl concentration, and the use of sodium chloride at 0.5 M. We also investigated the utility of glycogen as a nucleic acid carrier, finding 160 µg to be the optimal concentration. Comparative analysis with commercial kits indicated our method provides higher miRNA yields with reduced cycle threshold values, underscoring the effectiveness of our custom protocol. This optimized approach not only enhances miRNA recovery but also emphasizes safety and cost-effectiveness, making it a valuable method for both research and practical applications in aquaculture.
RESUMO
Candida albicans (C. albicans) biofilm infections are quite difficult to manage due to their resistance against conventional antifungal drugs. To address this issue, there is a desperate need for new therapeutic drugs. In the present study, a green and efficient protocol has been developed for the synthesis of 2-amino-4H-pyran-3-carbonitrile scaffolds 4a-i, 6a-j, and 8a-g by Knoevenagel-Michael-cyclocondensation reaction between aldehydes, malononitrile, and diverse enolizable C-H activated acidic compounds using guanidinium carbonate as a catalyst either under grinding conditions or by stirring at room temperature. This protocol is operationally simple, rapid, inexpensive, has easy workup and column-free purification. A further investigation of the synthesized compounds was conducted to examine their antifungal potential and their ability to inhibit the growth and development of biofilm-forming yeasts like fungus C. albicans. According to our findings, 4b, 4d, 4e, 6e, 6f, 6g, 6i, 8c, 8d, and 8g were found to be active and potential inhibitors for biofilm infection causing C. albicans. The inhibition of biofilm by active compounds were observed using field emission scanning electron microscopy (FESEM). Biofilm inhibiting compounds were also tested for in vitro toxicity by using 3T3-L1 cell line, and 4b, 6e, 6f, 6g, 6i, 8c, and 8d were found to be biocompatible. Furthermore, the in silico ADME descriptors revealed drug-like properties with no violation of Lipinski's rule of five. Hence, the result suggested that synthesized derivatives could serve as a useful aid in the development of novel antifungal compounds for the treatment of fungal infections and virulence in C. albicans.
Assuntos
Antifúngicos , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Animais , Camundongos , Piranos/farmacologia , Piranos/síntese química , Piranos/química , Nitrilas/farmacologia , Nitrilas/síntese química , Química Verde , Sobrevivência Celular/efeitos dos fármacosRESUMO
D2 is a structural and cooperative domain of Thermotoga maritima Arginine Binding Protein, that possesses a remarkable conformational stability, with a denaturation temperature of 102.6°C, at pH 7.4. The addition of potassium thiocyanate causes a significant decrease in the D2 denaturation temperature. The interactions of thiocyanate ions with D2 have been studied by means of isothermal titration calorimetry measurements and molecular dynamics simulations. It emerged that: (a) 20-30 thiocyanate ions interact with the D2 surface and are present in its first solvation shell; (b) each of them makes several contacts with protein groups, both polar and nonpolar ones. The addition of guanidinium thiocyanate causes a marked destabilization of the D2 native state, because both the ions are denaturing agents. However, on adding to the solution containing D2 and guanidinium thiocyanate a stabilizing agent, such as TMAO, sucrose or sodium sulfate, a significant increase in denaturation temperature occurs. The present results confirm that counteraction is a general phenomenon for globular proteins.
Assuntos
Simulação de Dinâmica Molecular , Estabilidade Proteica , Thermotoga maritima , Tiocianatos , Tiocianatos/química , Thermotoga maritima/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Sulfatos/química , Metilaminas/química , Domínios Proteicos , Guanidinas/químicaRESUMO
Parasite-derived new permeation pathways (NPPs) expressed at the red blood cell (RBC) membrane enable Plasmodium parasites to take up nutrients from the plasma to facilitate their survival. Thus, NPPs represent a potential novel therapeutic target for malaria. The putative channel component of the NPP in the human malaria parasite P. falciparum is encoded by mutually exclusively expressed clag3.1/3.2 genes. Complicating the study of the essentiality of these genes to the NPP is the addition of three clag paralogs whose contribution to the P. falciparum channel is uncertain. Rodent malaria P. berghei contains only two clag genes, and thus studies of P. berghei clag genes could significantly aid in dissecting their overall contribution to NPP activity. Previous methods for determining NPP activity in a rodent model have utilised flux-based assays of radioisotope-labelled substrates or patch clamping. This study aimed to ratify a streamlined haemolysis assay capable of assessing the functionality of P. berghei NPPs. Several isotonic lysis solutions were tested for their ability to preferentially lyse infected RBCs (iRBCs), leaving uninfected RBCs (uRBCs) intact. The osmotic lysis assay was optimised and validated in the presence of NPP inhibitors to demonstrate the uptake of the lysis solution via the NPPs. Guanidinium chloride proved to be the most efficient reagent to use in an osmotic lysis assay to establish NPP functionality. Furthermore, following treatment with guanidinium chloride, ring-stage parasites could develop into trophozoites and schizonts, potentially enabling use of guanidinium chloride for parasite synchronisation. This haemolysis assay will be useful for further investigation of NPPs in P. berghei and could assist in validating its protein constituents.
Assuntos
Eritrócitos , Guanidina , Hemólise , Malária , Plasmodium berghei , Plasmodium berghei/efeitos dos fármacos , Animais , Hemólise/efeitos dos fármacos , Guanidina/farmacologia , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Camundongos , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , HumanosRESUMO
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Assuntos
Guanidina , Simulação de Dinâmica Molecular , Nanoporos , Guanidina/química , Osmose , Íons/químicaRESUMO
This paper reports the vapor pressure and enthalpy of vaporization for a promising phase change material (PCM) guanidinium methanesulfonate ([Gdm][OMs]), which is a typical guanidinium organomonosulfonate that displays a lamellar crystalline architecture. [Gdm][OMs] was purified by recrystallization. The elemental analysis and infrared spectrum of [Gdm][OMs] confirmed the purity and composition. Differential scanning calorimetry (DSC) also confirmed its high purity and showed a sharp and symmetrical endothermic melting peak with a melting point (Tm) of 207.6 °C and a specific latent heat of fusion of 183.0 J g-1. Thermogravimetric analysis (TGA) reveals its thermal stability over a wide temperature range, and yet three thermal events at higher temperatures of 351 °C, 447 °C, and 649 °C were associated with vaporization or decomposition. The vapor pressure was measured using the isothermogravimetric method from 220 °C to 300 °C. The Antoine equation was used to describe the temperature dependence of its vapor pressure, and the substance-dependent Antoine constants were obtained by non-linear regression. The enthalpy of vaporization (ΔvapH) was derived from the linear regression of the slopes associated with the linear temperature dependence of the rate of weight loss per unit area of vaporization. Hence, the temperature dependence of vapor pressures ln Pvap (Pa) = 10.99 - 344.58/(T (K) - 493.64) over the temperature range from 493.15 K to 573.15 K and the enthalpy of vaporization ΔvapH = 157.10 ± 20.10 kJ mol-1 at the arithmetic mean temperature of 240 °C were obtained from isothermogravimetric measurements using the Antoine equation and the Clausius-Clapeyron equation, respectively. The flammability test indicates that [Gdm][OMs] is non-flammable. Hence, [Gdm][OMs] enjoys very low volatility, high enthalpy of vaporization, and non-flammability in addition to its known advantages. This work thus offers data support, methodologies, and insights for the application of [Gdm][OMs] and other organic salts as PCMs in thermal energy storage and beyond.
RESUMO
Perovskite light-emitting diodes (PeLEDs) show promise for high-definition displays due to their exceptional electroluminescent properties. However, the performance of pure blue PeLEDs is hindered by the unfavorable ionic behavior of halides and the presence of defective antisites in blue-emitting perovskite materials. An unstable buried interface between charge transport layers and the perovskite emitting layer is a major issue that limits carrier transport and recombination behavior in PeLEDs. In this study, effective buried defect passivation of pure blue perovskite emitting layers by introducing guanidinium chloride (GACl) as a bottom-passivating layer is demonstrated. The GACl bottom layer not only passivates the point defects present at the buried interface but also provides chloride anions to suppress ion migration and halide vacancy formation. Along with the defect passivation, GACl also enforces phase purity of 2D layered structure in the perovskite emitting layers to improve crystallinity and optoelectronic properties. As a result, the PeLEDs with high brightness (1200 cd m-2) and excellent external quantum efficiency (6.61%) are achieved at a spectrally stable pure blue electroluminescence at 471 nm (band width = 17.63 nm). This study offers insights into the straightforward way for effective buried passivation for preparing high-performance PeLEDs.
RESUMO
PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.
Assuntos
Amidas , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Amidas/química , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Ecoplanar/métodos , Glioma/diagnóstico por imagem , Algoritmos , Razão Sinal-Ruído , Neoplasias Encefálicas/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos , Masculino , Feminino , Guanidina/químicaRESUMO
Peripheral blood is the most practical tissue for human immune system gene expression profiling because it is easily accessible, whereas the site of primary infection in certain diseases may not be easily accessible. Due to the ex vivo instability of RNA transcripts, a key challenge in the gene expression analysis of blood samples is the rapid sample handling and stabilization of the mRNA by adding an RNA preservative (PAXgeneTM Blood RNA Tubes, TempusTM Blood RNA tubes, RNAlater Stabilization Reagent, RNAgard® Blood Tubes). BioMole (Turin, Italy) has developed a novel blood stabilizer, called RNApro, in which RNA is stabilized during phlebotomy and sample storage. In this study, RNApro performance intended as RNA yield, integrity, and stability was evaluated. Our results show that blood samples stored at -80 °C and re-extracted after 7 years show no differences in terms of quantity, quality, and amplificability. The samples in the RNAlater stabilization solution can be stored at room temperature for up to one week or at 4 °C for up to one month. Similar results can also be observed for PAXgene tubes, Tempus tubes, and RNAgard tubes. In agreement with these data, the RNApro stabilization solution preserves the RNA from degradation for up to 1 month at 4 °C and 1 week at room temperature. RNApro can be stored indifferently at -80, -20, 4 °C, or room temperature for up to 2 months after, and then could be stored at -80 °C for up to seven years. In summary, our study is the first to analyze the performance of an RNA stabilizer called RNApro. We can conclude that several studies have shown significant differences in gene expression analysis when the sample was preserved in different RNA stabilizers. Therefore, it is desirable to standardize the method of nucleic acid conservation when comparing data from transcriptomic analyses.
RESUMO
Introduction: Rapid identification of infected individuals through viral RNA or antigen detection followed by effective personal isolation is usually the most effective way to prevent the spread of a newly emerging virus. Large-scale detection involves mass specimen collection and transportation. For biosafety reasons, denaturing viral transport medium has been extensively used during the SARS-CoV-2 pandemic. However, the high concentrations of guanidinium isothiocyanate (GITC) in such media have raised issues around sufficient GITC supply and laboratory safety. Moreover, there is a lack of denaturing transport media compatible with SARS-CoV-2 RNA and antigen detection. Methods: Here, we tested whether supplementing media containing low concentrations of GITC with ammonium sulfate (AS) would affect the throat-swab detection of SARS-CoV-2 or a viral inactivation assay targeting coronavirus and other enveloped and non-enveloped viruses. The effect of adding AS to the media on RNA stability and its compatibility with SARS-CoV-2 antigen detection were also tested. Results and discussion: We found that adding AS to the denaturing transport media reduced the need for high levels of GITC, improved SARS-COV-2 RNA detection without compromising virus inactivation, and enabled the denaturing transport media compatible with SARS-CoV-2 antigen detection.
RESUMO
This work investigated the cocatalytic activity of recently prepared guanidinium salts containing an oxanorbornane subunit in an (S)-proline-catalyzed aldol reaction. The activity was interpreted by the diastereoselectivity of the reaction (anti/syn ratio) and for the most interesting polycyclic guanidinium salt, the enantioselectivity of the reaction was determined. The results indicated a negative impact on the oxanorbornane unit if present as the flexible substituent. For most of the tested aldehydes, the best cocatalysts provided enantioselectivities above 90% and above 95% at room temperature and 0 °C, respectively, culminating in >99.5% for 4-chloro- and 2-nitrobenzaldehyde as the substrate. The barriers for forming four possible enantiomers were calculated and the results for two anti-enantiomers are qualitatively consistent with the experiment. Obtained results suggest that the representatives of furfurylguanidinium and rigid polycyclic oxanorbornane-substituted guanidinium salts are good lead structures for developing new cocatalysts by tuning the chemical space around the guanidine moiety.
Assuntos
Guanidinas , Prolina , Catálise , Prolina/química , Guanidinas/química , Estereoisomerismo , Aldeídos/química , Norbornanos/química , Guanidina/química , Estrutura MolecularRESUMO
In this work, guanidinium (GA+) was doped into methylammonium lead triiodide (MAPbI3) perovskite film to fabricate perovskite solar cells (PSCs). To determine the optimal formulation of the resulting guanidinium-doped MAPbI3 ((GA)x(MA)1-xPbI3) for the perovskite active layer in PSCs, the perovskite films with various GA+ doping concentrations, annealing temperatures, and thicknesses were systematically modulated and studied. The experimental results demonstrated a 400-nm-thick (GA)x(MA)1-xPbI3 film, with 5% GA+ doping and annealed at 90 °C for 20 min, provided optimal surface morphology and crystallinity. The PSCs configured with the optimal (GA)x(MA)1-xPbI3 perovskite active layer exhibited an open-circuit voltage of 0.891 V, a short-circuit current density of 24.21 mA/cm2, a fill factor of 73.1%, and a power conversion efficiency of 15.78%, respectively. Furthermore, the stability of PSCs featuring this optimized (GA)x(MA)1-xPbI3 perovskite active layer was significantly enhanced.
RESUMO
Non-toxic carbon-based hybrid nanomaterials based on carbon nanodisks were synthesized and assessed as novel antibacterial agents. Specifically, acid-treated carbon nanodisks (oxCNDs), as a safe alternative material to graphene oxide, interacted through covalent and non-covalent bonding with guanidinylated hyperbranched polyethyleneimine derivatives (GPEI5K and GPEI25K), affording the oxCNDs@GPEI5K and oxCNDs@GPEI25K hybrids. Their physico-chemical characterization confirmed the successful and homogenous attachment of GPEIs on the surface of oxCNDs, which, due to the presence of guanidinium groups, offered them improved aqueous stability. Moreover, the antibacterial activity of oxCNDs@GPEIs was evaluated against Gram-negative E. coli and Gram-positive S. aureus bacteria. It was found that both hybrids exhibited enhanced antibacterial activity, with oxCNDs@GPEI5K being more active than oxCNDs@GPEI25K. Their MIC and MBC values were found to be much lower than those of oxCNDs, revealing that the GPEI attachment endowed the hybrids with enhanced antibacterial properties. These improved properties were attributed to the polycationic character of the oxCNDs@GPEIs, which enables effective interaction with the bacterial cytoplasmic membrane and cell walls, leading to cell envelope damage, and eventually cell lysis. Finally, oxCNDs@GPEIs showed minimal cytotoxicity on mammalian cells, indicating that these hybrid nanomaterials have great potential to be used as safe and efficient antibacterial agents.
RESUMO
The landscape of cancer therapy has witnessed a paradigm shift with the emergence of innovative delivery systems, and Guanidinium-based Peptide Dendrimers have emerged as a vanguard in this transformative journey. With their unique molecular architecture and intrinsic biocompatibility, these dendrimers offer a promising avenue for the targeted delivery of therapeutic cargo in cancer treatment. This comprehensive review delves into the intricate world of Guanidinium- based Peptide Dendrimers, unraveling their structural intricacies, mechanisms of action, and advancements that have propelled them from laboratory curiosities to potential clinical champions. Exploiting the potent properties of guanidinium, these dendrimers exhibit unparalleled precision in encapsulating and transporting diverse cargo molecules, ranging from conventional chemotherapeutics to cutting-edge nucleic acids. The review navigates the depths of their design principles, investigating their prowess in traversing the complex terrain of cellular barriers for optimal cargo delivery. Moreover, it delves into emerging trends, such as personalized therapeutic approaches, multimodal imaging, and bioinformatics-driven design, highlighting their potential to redefine the future of cancer therapy. Crucially, the review addresses the pivotal concerns of biocompatibility and safety, examining cytotoxicity profiles, immune responses, and in vivo studies. It underscores the importance of aligning scientific marvels with the stringent demands of clinical applications. Through each section, the narrative underscores the promises and possibilities that Guanidinium-based Peptide Dendrimers hold and how they can potentially reshape the landscape of precision cancer therapy.
Assuntos
Dendrímeros , Guanidina , Neoplasias , Peptídeos , Dendrímeros/química , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Guanidina/química , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Sistemas de Liberação de MedicamentosRESUMO
Ribonucleic Acid (RNA) isolation is a basic technique in the field of molecular biology. The purpose of RNA isolation is to acquire pure and complete RNA that can be used to evaluate gene expression. Many methods can be used to perform RNA isolation, all of them based on the chemical properties of nucleic acids. However, some of them do not achieve high RNA yields and purity levels when used in a number of marginally studied crops of agronomic importance, such as grain and vegetable amaranth plants. In the method described here, the use of guanidinium thiocyanate and two additional precipitation steps with different reagents designed to obtain high yields and RNA purity levels from diverse plant species employed for plant functional genomics studies is described.
Assuntos
Produtos Agrícolas , RNA de Plantas , Produtos Agrícolas/genética , RNA de Plantas/isolamento & purificação , RNA de Plantas/genética , Tiocianatos/química , Guanidinas/química , Amaranthus/genética , Amaranthus/químicaRESUMO
Tapping into the innate immune system's power, nanovaccines can induce tumor-specific immune responses, which is a promising strategy in cancer immunotherapy. However, traditional vaccine design, requiring simultaneous loading of antigens and adjuvants, is complex and poses challenges for mass production. Here, we developed a tumor nanovaccine platform that integrates adjuvant functions into the delivery vehicle, using branched polyguanidine (PolyGu) nanovaccines. These nanovaccines were produced by modifying polyethylenimine (PEI) with various guanidine groups, transforming PEI's cytotoxicity into innate immune activation. The PolyGu nanovaccines based on poly(phenyl biguanidine ) (Poly-PBG) effectively stimulated dendritic cells, promoted their maturation via the TLR4 and NLRP3 pathways, and displayed robust in vivo immune activity. They significantly inhibited tumor growth and extended mouse survival. The PolyGu also showed promise for constructing more potent mRNA-based nanovaccines, offering a platform for personalized cancer vaccine. This work advances cancer immunotherapy toward potential clinical application by introducing a paradigm for developing self-adjuvanting nanovaccines.
Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Camundongos , Nanovacinas , Adjuvantes Imunológicos , Imunoterapia , Neoplasias/terapiaRESUMO
A guanidine-based Deep Eutectic Solvent (DES) consisting of 1,3-diaminoguanidine monohydrochloride and glycerol was utilized to prepare C-CNC from dissolving pulp. The pulp fibers were oxidized to dialdehyde cellulose by periodate, then fibrillated through the hydrogen bonds shear of DES and aminocationized through Schiff base effect of the amino groups in the DES solvent to obtain C-CNC. The results revealed that the characterization of the DES (such as viscosity, polarity, and pH) was related to the molar ratio of glycerol/guanidine-salts. The hydrogen bond network structure of DES solvent with optimal system was simulated by DFT and its damage to fiber hydrogen bond network was predicted. The C-CNC produced under the optimal reaction conditions (molar ratio of 1:2, 90 °C for 2 h) was highly dispersible with an average length and diameter of 85 ± 35 nm and 5.0 ± 1.2 nm, a charge density of 2.916 mol/g. C-CNC exhibited excellent flocculation when added to fine fiber suspensions of chemomechanical slurries, achieving rapid flocculation and settling onto fibers in <1 min. The DES solvent maintained its reactivity after 5 cycles. This study lays the foundation for the batch preparation of nanocellulose in an environmentally friendly manner and its application as a green additive in paper industry.
Assuntos
Solventes Eutéticos Profundos , Glicerol , Guanidina , Guanidinas , Bioensaio , SolventesRESUMO
Nonendocytic cell uptake of nanomaterials is challenging, which requires specific surface chemistry and smaller particle size. Earlier works have shown that an arginine-terminated nanoparticle of <10-20 nm size shows nonendocytic uptake via direct membrane penetration. However, the roles of surface arginine density and the arginine-arginine distance at the nanoparticle surface in controlling such nonendocytic uptake mechanism is not yet explored. Here we show that a higher arginine density at the nanoparticle surface with an arginine-arginine distance of <3 nm is the most critical aspect for such nonendocytic uptake. We have used quantum dot (QD)-based nanoparticles as a model for fluorescent tracking inside cells and for quantitative estimation of cellular uptake. We found that arginine-terminated nanoparticles of 10 nm size can opt for the energy-dependent endocytosis pathway if the arginine-arginine distance is >3 nm. In contrast, nanoparticles with <3 nm arginine-arginine distance rapidly enter into the cell via the nonendocytic approach, are freely available in the cytosol in large amounts to capture the cellular adenosine triphosphate (ATP), generate oxidative stress, and induce ATP-deficient cellular autophagy. This work shows that arginine-arginine distance at the nanoparticle surface is another fundamental parameter, along with the particle size, for the nonendocytic cell uptake of foreign materials and to control intracellular activity. This approach may be utilized in designing nanoprobes and nanocarriers with more efficient biomedical performances.
Assuntos
Nanopartículas , Pontos Quânticos , Arginina , Nanopartículas/metabolismo , Autofagia , Trifosfato de Adenosina , Tamanho da Partícula , EndocitoseRESUMO
Cationic organic polymers have found relatively extensive utility for TcO4-/ReO4- removal, but the harsh preparation conditions constrain their practical application. The bifunctional guanidinium-based cationic organic polymer (GBCOP) was successfully and facilely synthesized in benign conditions within 1 h. Batch experiments showed that GBCOP exhibited rapid removal kinetics (1 min, >98.0%) and a substantial removal capacity of 536.8 mg/g for ReO4-. Even in 1000-fold co-existing NO3- anions, the removal efficiency of GBCOP for ReO4- was 74.0%, indicating its good selectivity. Moreover, GBCOP had high removal efficiencies for ReO4- across a wide pH (3.0-10.0) range and presented remarkable stability under the conditions of strong acid and base. GBCOP could be reused four times while removing 80.8% ReO4- from simulated Hanford wastewater. SEM and XPS results revealed that the mechanism of ReO4- removal involved Cl- ion exchange within the channels of GBCOP. Theoretical calculation results supported that existing the strong electrostatic interaction between guanidinium and ReO4-. This dual-function GBCOP material is cost-effective and holds significant potential for large-scale preparation, making it a promising solution for TcO4- removal from nuclear wastewater.