Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Nano ; 18(20): 12897-12904, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38710615

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) have gained significant attention as a gain medium for nanolasers, owing to their unique ability to be easily placed and stacked on virtually any substrate. However, the atomically thin nature of the active material in existing TMD lasers and the limited size due to mechanical exfoliation presents a challenge, as their limited output power makes it difficult to distinguish between true laser operation and other "laser-like" phenomena. Here, we present room temperature lasing from a large-area tungsten disulfide (WS2) monolayer, grown by a wafer-scale chemical vapor deposition (CVD) technique. The monolayer is placed on a dual-resonance dielectric metasurface with a rectangular lattice designed to enhance both absorption and emission, resulting in an ultralow threshold operation (threshold well below 1 W/cm2). We provide a thorough study of the laser performance, paying special attention to directionality, output power, and spatial coherence. Notably, our lasers demonstrated a coherence length of over 30 µm, which is several times greater than what has been reported for 2D material lasers so far. Our realization of a single-mode laser from a CVD-grown monolayer presents exciting opportunities for integration and the development of real-world applications.

2.
ACS Photonics ; 11(3): 1078-1084, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38576862

RESUMO

The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS2 waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics.

3.
ACS Sens ; 9(4): 1857-1865, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38597428

RESUMO

Resonant photonic refractive index sensors have made major advances based on their high sensitivity and contact-less readout capability, which is advantageous in many areas of science and technology. A major issue for the technological implementation of such sensors is their response to external influences, such as vibrations and temperature variations; the more sensitive a sensor, the more susceptible it also becomes to external influences. Here, we introduce a novel bowtie-shaped sensor that is highly responsive to refractive index variations while compensating for temperature changes and mechanical (linear and angular) vibrations. We exemplify its capability by demonstrating the detection of salinity to a precision of 0.1%, corresponding to 2.3 × 10-4 refractive index units in the presence of temperature fluctuations and mechanical vibrations. As a second exemplar, we detected bacteria growth in a pilot industrial environment. Our results demonstrate that it is possible to translate high sensitivity resonant photonic refractive index sensors into real-world environments.


Assuntos
Fótons , Refratometria , Temperatura , Vibração , Salinidade
4.
Nano Lett ; 24(10): 3150-3156, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477059

RESUMO

Miniaturized photodetectors are becoming increasingly sought-after components for next-generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded on the Internet of Things. A major challenge, however, lies in shrinking the device footprint while maintaining high efficiency. This conundrum can be solved by realizing a nontrivial relation between the energy and momentum of photons, such as dispersion-free devices, known as flat bands. Here, we leverage flat-band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved an ∼10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ∼36° allows incoming light to be collected via a large-aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.

5.
ACS Sens ; 9(1): 455-463, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38234004

RESUMO

Selective detection of biomarkers at low concentrations in blood is crucial for the clinical diagnosis of many diseases but remains challenging. In this work, we aimed to develop an ultrasensitive immunoassay that can detect biomarkers in serum with an attomolar limit of detection (LOD). We proposed a sandwich-type heterogeneous immunosensor in a 3 × 3 well array format by integrating a resonant waveguide grating (RWG) substrate with upconversion nanoparticles (UCNPs). UCNPs were used to label a target biomarker captured by capture antibody molecules immobilized on the surface of the RWG substrate, and the RWG substrate was used to enhance the upconversion luminescence (UCL) of UCNPs through excitation resonance. The LOD of the immunosensor was greatly reduced due to the increased UCL of UCNPs and the reduction of nonspecific adsorption of detection antibody-conjugated UCNPs on the RWG substrate surface by coating the RWG substrate surface with a carboxymethyl dextran layer. The immunosensor exhibited an extremely low LOD [0.24 fg/mL (9.1 aM)] and wide detection range (1 fg/mL to 100 pg/mL) in the detection of cardiac troponin I (cTnI). The cTnI concentrations in human serum samples collected at different times during cyclophosphamide, epirubicin, and 5-fluorouracil (CEF) chemotherapy in a breast cancer patient were measured by an immunosensor, and the results showed that the CEF chemotherapy did cause cardiotoxicity in the patient. Having a higher number of wells in such an array-based biosensor, the sensor can be developed as a high-throughput diagnostic tool for clinically important biomarkers.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Humanos , Troponina I , Imunoensaio/métodos , Nanopartículas/química , Epirubicina , Biomarcadores
6.
Nano Lett ; 23(24): 11802-11808, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085099

RESUMO

We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.

7.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38133049

RESUMO

Topological nature in different areas of physics and electronics has often been characterized and controlled through topological invariants depending on the global properties of the material. The validity of bulk-edge correspondence and symmetry-related topological invariants has been extended to non-Hermitian systems. Correspondingly, the value of geometric phases, such as the Pancharatnam-Berry or Zak phases, under the adiabatic quantum deformation process in the presence of non-Hermitian conditions, are now of significant interest. Here, we explicitly calculate the Zak phases of one-dimensional topological nanobeams that sustain guided-mode resonances, which lead to energy leakage to a continuum state. The retrieved Zak phases show as zero for trivial and as π for nontrivial photonic crystals, respectively, which ensures bulk-edge correspondence is still valid for certain non-Hermitian conditions.

8.
Biosensors (Basel) ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38131766

RESUMO

Integrating biosensors with smartphones is becoming an increasingly popular method for detecting various biomolecules and could replace expensive laboratory-based instruments. In this work, we demonstrate a novel smartphone-based biosensor system with a gradient grating period guided-mode resonance (GGP-GMR) sensor. The sensor comprises numerous gratings which each correspond to and block the light of a specific resonant wavelength. This results in a dark band, which is observed using a CCD underneath the GGP-GMR sensor. By monitoring the shift in the dark band, the concentration of a molecule in a sample can be determined. The sensor is illuminated by a light-emitting diode, and the light transmitted through the GGP-GMR sensor is directly captured by a smartphone, which then displays the results. Experiments were performed to validate the proposed smartphone biosensor and a limit of detection (LOD) of 1.50 × 10-3 RIU was achieved for sucrose solutions. Additionally, multiplexed detection was demonstrated for albumin and creatinine solutions at concentrations of 0-500 and 0-1 mg/mL, respectively; the corresponding LODs were 1.18 and 20.56 µg/mL.


Assuntos
Técnicas Biossensoriais , Smartphone , Técnicas Biossensoriais/métodos , Limite de Detecção
9.
Micromachines (Basel) ; 14(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37893254

RESUMO

Bound states in the continuum (BIC)-based all-silicon metasurfaces have attracted widespread attention in recent years because of their high quality (Q) factors in terahertz (THz) frequencies. Here, we propose and experimentally demonstrate an all-silicon BIC metasurface consisting of an air-hole array on a Si substrate. BICs originated from low-order TE and TM guided mode resonances (GMRs) induced by (1,0) and (1,1) Rayleigh diffraction of metagratings, which were numerically investigated. The results indicate that the GMRs and their Q-factors are easily excited and manipulated by breaking the lattice symmetry through changes in the position or radius of the air-holes, while the resonance frequencies are less sensitive to these changes. The measured Q-factor of the GMRs is as high as 490. The high-Q metasurfaces have potential applications in THz modulators, biosensors, and other photonic devices.

10.
Biosens Bioelectron ; 242: 115743, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37826878

RESUMO

Chronic wounds present a major healthcare burden, yet most wounds are only assessed superficially, and treatment is rarely based on the analysis of wound biomarkers. This lack of analysis is based on the fact that sampling of wound biomarkers is typically invasive, leading to a disruption of the wound bed while biomarker detection and quantification is performed in a remote laboratory, away from the point of care. Here, we introduce the diagnostic element of a novel theranostic system that can non-invasively sample biomarkers without disrupting the wound and that can perform biomarker quantification at the point of care, on a short timescale. The system is based on a thermally switchable hydrogel scaffold that enhances wound healing through regeneration of the wound tissue and allows the extraction of wound biomarkers non-destructively. We demonstrate the detection of two major biomarkers of wound health, i.e., IL-6 and TNF-α, in human matrix absorbed into the hydrogel dressing. Quantification of the biomarkers directly in the hydrogel is achieved using a chirped guided mode resonant biosensor and we demonstrate biomarker detection within the clinically relevant range of pg/mL to µg/mL concentrations. We also demonstrate the detection of IL-6 and TNF-α at concentration 1 ng/mL in hydrogel dressing absorbed with clinical wound exudate samples. The high sensitivity and the wide dynamic range we demonstrate are both essential for the clinical relevance of our system. Our test makes a major contribution towards the development of a wound theranostic for guided treatment and management of chronic wounds.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Humanos , Fator de Necrose Tumoral alfa , Interleucina-6 , Biomarcadores
11.
Biosens Bioelectron ; 241: 115695, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776624

RESUMO

Photonic biosensors are promising platforms for the rapid detection of pathogens with the potential to replace conventional diagnostics based on microbiological culturing methods. Intricately designed sensing elements with robust architectures can offer highly sensitive detection at minimal development cost enabling rapid adoption in low-resource settings. In this work, an optical detection scheme is developed by structuring guided mode resonance (GMR) on a highly stable, transparent silicon nitride (SiN) substrate and further biofunctionalized to identify a specific bacteria Pseudomonas aeruginosa. The resonance condition of the GMR chip is optimized to have relatively high bulk sensitivity with a good quality factor. The biofunctionalization aims at oriented immobilization of specific antibodies to allow maximum bacteria attachment and improved specificity. The sensitivity of the assays is evaluated for clinically relevant concentrations ranging from 102 to 108 CFU/mL. From the calibration curves, the sensitivity of the chip is extracted as 0.134nm/Log10 [concentration], and the detection modality possesses a favorably good limit of detection (LOD) 89 CFU/mL. The use of antibodies as a biorecognition element complemented with a good figure of merit of GMR sensing element allows selective bacteria identification compared to other non-specific pathogenic bacteria that are relevant for testing physiological samples. Our developed GMR biosensor is low-cost, easy to handle, and readily transformable into a portable handheld detection modality for remote usage.

12.
Nanomaterials (Basel) ; 13(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630935

RESUMO

Subwavelength resonant lattices offer a wide range of fascinating spectral phenomena under broadside illumination. The resonance mechanism relies on the generation of lateral Bloch modes that are phase matched to evanescent diffraction orders. The spectral properties and the total number of resonance states are governed by the structure of leaky modes and the mode count. This study investigates the effect of interface modifications on the band dynamics and bound-state transitions in guided-mode resonant lattices. We provide photonic lattices comprising rectangular Si3N4 rods with a liquid film with an adjustable boundary. The band structures and band flips are examined through numerical simulations using the rigorous coupled-wave analysis (RCWA) method and analyzing the zero-order spectral reflectance as a function of the incident angle. The band structures and band flips are examined through numerical simulations, and the influences of the refractive index and the thickness of the oil layer on the band dynamics are investigated. The results reveal distinct resonance linewidths corresponding to different refractive indices of the oil layer. Furthermore, the effect of the oil thickness on the band dynamics is explored, demonstrating precise control over the number of propagating modes within the lattice structure. Theoretical simulations and experimental results are presented for a subwavelength silicon-nitride lattice combined with a liquid film featuring an adjustable boundary. The presence of a relatively thick liquid waveguiding region enables the emergence of additional modes, including the first four transverse-electric (TE) leaky modes, which produce observable resonance signatures. Through experimental manipulation of the basic lattice's duty cycle, the four bands undergo quantifiable band transitions and closures. The experimental results obtained within the 1400-1600 nm spectral range exhibit reasonable agreement with the numerical analysis. These findings underscore the significant role played by the interface in shaping the band dynamics of the lattice structure, providing valuable insights into the design and optimization of photonic lattices with adjustable interfaces.

13.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446505

RESUMO

Indium tin oxide (ITO) has recently gained prominence as a photonic nanomaterial, for example, in modulators, tuneable metasurfaces and for epsilon-near-zero (ENZ) photonics. The optical properties of ITO are typically described by the Drude model and are strongly dependent on the deposition conditions. In the current literature, studies often make several assumptions to connect the optically measured material parameters to the electrical properties of ITO, which are not always clear, nor do they necessarily apply. Here, we present a comprehensive study of the structural, electrical, and optical properties of ITO and showed how they relate to the deposition conditions. We use guided mode resonances to determine the dispersion curves of the deposited material and relate these to structural and electrical measurements to extract all relevant material parameters. We demonstrate how the carrier density, mobility, plasma frequency, electron effective mass, and collision frequency vary as a function of deposition conditions, and that the high-frequency permittivity (쵰) can vary significantly from the value of 쵰 = 3.9 that many papers simply assume to be a constant. The depth of analysis we demonstrate allows the findings to be easily extrapolated to the photonic characterisation of other transparent conducting oxides (TCOs), whilst providing a much-needed reference for the research area.

14.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242011

RESUMO

The discovered light modulation capabilities of diatom silicious valves make them an excellent toolkit for photonic devices and applications. In this work, a reproducible surface-enhanced Raman scattering (SERS) enhancement was achieved with hybrid substrates employing diatom silica valves coated with an ultrathin uniform gold film. Three structurally different hybrid substrates, based on the valves of three dissimilar diatom species, have been compared to elucidate the structural contribution to SERS enhancement. The comparative analysis of obtained results showed that substrates containing cylindrical Aulacoseira sp. valves achieved the highest enhancement, up to 14-fold. Numerical analysis based on the frequency domain finite element method was carried out to supplement the experimental results. Our results demonstrate that diatom valves of different shapes can enhance the SERS signal, offering a toolbox for SERS-based sensors, where the magnitude of the enhancement depends on valve geometry and ultrastructure.

15.
Biosensors (Basel) ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248398

RESUMO

Handheld biosensors have attracted substantial attention for numerous applications, including disease diagnosis, drug dosage monitoring, and environmental sensing. This study presents a novel handheld biosensor based on a gradient grating period guided-mode resonance (GGP-GMR) sensor. Unlike conventional GMR sensors, the proposed sensor's grating period varies along the device length; hence, the resonant wavelength varies linearly along the device length. If a GGP-GMR sensor is illuminated with a narrow band of light at normal incidence, the light resonates and reflects at a specific period but transmits at other periods; this can be observed as a dark band by using a complementary metal oxide semiconductor (CMOS) underneath the sensor. The concentration of a target analyte can be determined by monitoring the shift of this dark band. We designed and fabricated a handheld device incorporating a light-emitting diode (LED) light source, the necessary optics, an optofluidic chip with an embedded GGP-GMR sensor, and a CMOS. LEDs with different beam angles and bandpass filters with different full width at half maximum values were investigated to optimize the dark band quality and improve the accuracy of the subsequent image analysis. Substrate materials with different refractive indices and waveguide thicknesses were also investigated to maximize the GGP-GMR sensor's figure of merit. Experiments were performed to validate the proposed handheld biosensor, which achieved a limit of detection (LOD) of 1.09 × 10-3 RIU for bulk solution measurement. The sensor's performance in the multiplexed detection of albumin and creatinine solutions at concentrations of 0-500 µg/mL and 0-10 mg/mL, respectively, was investigated; the corresponding LODs were 0.66 and 0.61 µg/mL.


Assuntos
Monitoramento de Medicamentos , Processamento de Imagem Assistida por Computador , Creatinina , Limite de Detecção , Óxidos
16.
Materials (Basel) ; 15(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591609

RESUMO

In this work, fabrication of a dielectric photonic crystal device and numerical study of its spectral characteristics as a refractive index sensor are presented for near infrared range. The proposed nanosensor device is composed of low-cost dielectric materials, i.e., silicon dioxide and niobium pentoxide, and is fabricated using focused ion-beam milling lithography. In the first part, the fabrication process of the device is discussed, along with the process parameters and their effects on the structural properties of the resulting photonic crystal elements. In the second part, the device is numerically tested as a sensor for the biological refractive index range of 1.33 to 1.4. The performance considerations of the biosensor device are studied for 12 different structural profiles based on the fabrication results. It is shown that the angular-wall-profile of the fabricated structures downgrades the performance of the sensor, and the optimum value of hole depth should be in the range of 930-1500 nm to get the best performance. A sensitivity of 185.117 nm/RIU and a figure of merit of 9.7 were recorded for the optimum design of the device; however, a maximum sensitivity of 296.183 nm/RIU and a figure-of-merit of 13.184 RIU-1 were achieved. The device is recommended for a variety of biosensing applications due to its inert material properties, stable design and easy integration with fiber-optic setups.

17.
Nano Lett ; 22(7): 2712-2717, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35369689

RESUMO

Metasurfaces are commonly constructed from two-dimensional arrangements of nanoresonators. Coherent coupling of the nanoresonators through extended photonic modes of the metasurface results in a modified collective optical response, and enhances light-matter interactions. Here we experimentally demonstrate that strong collective resonances can arise also from coupling the metasurface to an optical waveguide. We explore the effect this waveguide-assisted collective interaction has on second-harmonic generation from the hybrid system. Our measurements indicate an enhancement factor of 8 for the transmitted second harmonic in comparison to incoherent collective scattering. In addition, complementary simulations predict about a 100-fold enhancement for the second harmonic that remains confined inside the waveguide. The ability to control the hybrid modes by the waveguide's design provides broader control over the formation of the collective interaction and new tools to tailor the nonlinear interactions. Our findings pave a promising direction to realize nonlinear photonic circuits with metasurfaces.

18.
ACS Appl Mater Interfaces ; 14(16): 18825-18834, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35427107

RESUMO

The broadband antireflective (AR) effect for wide incident angles has a significant effect on the photoconversion efficiency of photovoltaics and visibility of large-format display panels. The fabrication of surface nanostructures has continued to attract research interest as an effective way to provide such optical performance. However, the effects of different nanostructure geometries are not fully understood, especially for wide-angle AR effects. In this work, we conduct a systematic analysis of the effect of periodic nanostructures such as nanocones (NCs) and inverted nanocones (INCs) on anti-reflectivity at high angles of incidence (AOIs) in terms of light scattering, guided-mode resonance (GMR), and internal reflections. NCs provide good coupling of light scattering and GMR because of their protruding geometry; hence, reduced reflectance can be obtained in the short wavelength region. Further, NCs exhibit relatively weaker GMR intensities and internal reflections, resulting in low reflectance in the long wavelength region. Therefore, NCs offer a superior broadband AR effect for high AOIs compared with INCs. Based on this analysis, we demonstrate an extremely low average reflectance (5.4%) compared to that of the bare substrate (34.7%) for the entire visible range at an AOI of 75° by fabricating NCs on both sides of the substrate.

19.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616023

RESUMO

Siliceous diatom frustules present a huge variety of shapes and nanometric pore patterns. A better understanding of the light modulation by these frustules is required to determine whether or not they might have photobiological roles besides their possible utilization as building blocks in photonic applications. In this study, we propose a novel approach for analyzing the near-field light modulation by small pennate diatom frustules, utilizing the frustule of Gomphonema parvulum as a model. Numerical analysis was carried out for the wave propagation across selected 2D cross-sections in a statistically representative 3D model for the valve based on the finite element frequency domain method. The influences of light wavelength (vacuum wavelengths from 300 to 800 nm) and refractive index changes, as well as structural parameters, on the light modulation were investigated and compared to theoretical predictions when possible. The results showed complex interference patterns resulting from the overlay of different optical phenomena, which can be explained by the presence of a few integrated optical components in the valve. Moreover, studies on the complete frustule in an aqueous medium allow the discussion of its possible photobiological relevance. Furthermore, our results may enable the simple screening of unstudied pennate frustules for photonic applications.

20.
Methods Mol Biol ; 2393: 57-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837174

RESUMO

We have developed large-scale one-dimensional photonic crystals from standard recordable Blu-ray disks, tailored to sense unlabeled biorecognition events on their surface. These materials rely on coating, with layers of 80 nm of titanium oxide, nanogrooved polycarbonate plates obtained from regular disks. As a result, they present guided-mode resonances that we have demonstrated that can be exploited to quantify biorecognition events by means of the bandgap positions in the transmission spectra. These photonic crystals have displayed well-correlated dose-response curves in immunoassays to quantify IgGs, C-reactive protein, and lactate dehydrogenase. The detection limit reached is 16 ng/mL, 2µg/mL, and 18 ng/mL, respectively. Herein we describe the experimental procedures and methods to fabricate and functionalize these photonic crystals, perform immunoassays on them, set up an optical system to measure their response, and process the resulting data to perform bioanalytical determinations in label-free format.


Assuntos
Óptica e Fotônica , Técnicas Biossensoriais , Proteína C-Reativa , Imunoensaio , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA