Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Public Health ; 12: 1398460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328991

RESUMO

Background: Metabolic syndrome (MetS) prevalence has increased globally.The evidence shows thatdiet and gut microbial metabolites includingtrimethylamine N-oxide (TMAO) and kynurenine (KYN) play an important role in developing MetS. However, there is a lack of evidence on associations between between diet and these metabolites. This study aimed to investigate the interaction between dietary nitrate/nitrite and gut microbial metabolites (TMAO, KYN) on MetS and its components. Methods: This cross-sectional study included 250 adults aged 20-50 years. Dietary intake was assessed using food frequency questionnaires (FFQ), and serum TMAO and KYN levels were measured. MetS was defined usingthe National Cholesterol Education Program Adult Treatment Panel (NCEP ATP III) criteria. Result: The ATPIII index revealed an 11% prevalence of metabolic syndrome among the study participants. After adjusting for confounders, significant positive interactions were found: High animal-source nitrate intake and high TMAO levels with elevated triglycerides (TG) (p interaction = 0.07) and abdominal obesity (p interaction = 0.08). High animal-source nitrate intake and high KYN levels with increased TG (p interaction = 0.01) and decreased high-density lipoprotein cholesterol (HDL) (p interaction = 0.01).Individuals with high animal-source nitrite intake and high TMAO levels showed increased risk of hypertriglyceridemia (OR: 1.57, 95%CI: 0.35-2.87, p = 0.05), hypertension (OR: 1.53, 95%CI: 0.33-2.58, p = 0.06), and lower HDL (OR: 1.96, 95%CI: 0.42-2.03, p = 0.04). Similarly, high animal-source nitrite intake with high KYN levels showed lower HDL (OR: 2.44, 95%CI: 1.92-3.89, p = 0.07) and increased risk of hypertension (OR: 2.17,95%CI: 1.69-3.40, p = 0.05). Conversely, Negative interactions were found between high plant-source nitrate/nitrite intake with high KYN and TMAO levels on MetS and some components. Conclusion: There is an interaction between dietary nitrate/nitrite source (animal vs. plant) and gut microbial metabolites (TMAO and KYN) on the risk of of MetS and its components. These findings highlight the importance of considering diet, gut microbiome metabolites, and their interactions in MetS risk assessment.


Assuntos
Dieta , Microbioma Gastrointestinal , Síndrome Metabólica , Nitratos , Nitritos , Humanos , Estudos Transversais , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Nitritos/sangue , Dieta/estatística & dados numéricos , Metilaminas/metabolismo , Metilaminas/sangue , Adulto Jovem , Prevalência
2.
Metabolites ; 14(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39330501

RESUMO

Trace minerals are essential for biological processes, including enzyme function, immune response, and hormone synthesis. The study assessed the effects of different dietary trace minerals on the gut health, microbiota composition, and immune function of cats. Eighteen adult British Shorthair cats were divided into three groups receiving inorganic trace minerals (ITM), a 50/50 mix of inorganic and organic trace minerals (ITM + OTM), or organic trace minerals (OTM) for 28 days. The OTM showed enhanced immune capacities, reduced intestinal barrier function, and lower inflammation condition. The OTM altered gut microbiota diversity, with a lower Simpson index and higher Shannon index (p < 0.05). Specifically, the abundance of Bacteroidota, Lachnospiraceae, and Prevotella in the OTM group were higher than the ITM group (p < 0.05). Metabolomic analysis identified 504 differential metabolites between the OTM and ITM groups (p < 0.05, VIP-pred-OPLS-DA > 1), affecting pathways related to steroid hormone biosynthesis and glycerophospholipid metabolism (p < 0.05, VIP-pred-OPLS-DA > 2). Additionally, there was a significant correlation between intestinal microbiota and differential metabolites. To conclude, dietary OTM can modulate the gut metabolite and microbiota composition, enhance immune and intestinal barrier function, and mitigate inflammation in cats, highlighting the benefit of using OTM in feline diet to promote the intestinal and overall health.

3.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337693

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Animais
4.
Cell Host Microbe ; 32(8): 1280-1300, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146799

RESUMO

The inhabitants of our intestines, collectively called the gut microbiome, comprise fungi, viruses, and bacterial strains. These microorganisms are involved in the fermentation of dietary compounds and the regulation of our adaptive and innate immune systems. Less known is the reciprocal interaction between the gut microbiota and type 2 diabetes mellitus (T2DM), as well as their role in modifying therapies to reduce associated morbidity and mortality. In this review, we aim to discuss the existing literature on gut microbial strains and their diet-derived metabolites involved in T2DM. We also explore the potential diagnostics and therapeutic avenues the gut microbiota presents for targeted T2DM management. Personalized treatment plans, driven by diet and medication based on the patient's microbiome and clinical markers, could optimize therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 2/microbiologia , Humanos , Dieta , Bactérias/metabolismo , Bactérias/classificação , Animais , Disbiose/microbiologia
5.
Int Immunopharmacol ; 138: 112617, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38972213

RESUMO

Severe steatosis in donor livers is contraindicated for transplantation due to the high risk of ischemia-reperfusion injury (IRI). Although Ho-1 gene-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) can mitigate IRI, the role of gut microbiota and metabolites in this protection remains unclear. This study aimed to explore how gut microbiota and metabolites contribute to HO-1/BMMSCs-mediated protection against IRI in severe steatotic livers. Using rat models and cellular models (IAR20 and THLE-2 cells) of steatotic liver IRI, this study revealed that ischemia-reperfusion led to significant liver and intestinal damage, heightened immune responses, impaired liver function, and altered gut microbiota and metabolite profiles in rats with severe steatosis, which were partially reversed by HO-1/BMMSCs transplantation. Integrated microbiome and metabolome analyses identified gut microbial metabolite oleanolic acid as a potential protective agent against IRI. Experimental validation showed that oleanolic acid administration alone alleviated IRI and inhibited ferroptosis in both rat and cellular models. Network pharmacology and molecular docking implicated KEAP1/NRF2 pathway as a potential target of oleanolic acid. Indeed, OA experimentally upregulated NRF2 activity, which underlies its inhibition of ferroptosis and protection against IRI. The gut microbial metabolite OA protects against IRI in severe steatotic liver by promoting NRF2 expression and activity, thereby inhibiting ferroptosis.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Ácido Oleanólico , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Ratos , Elementos de Resposta Antioxidante , Linhagem Celular , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transplante de Células-Tronco Mesenquimais , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39004537

RESUMO

The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.

7.
Food Chem ; 457: 140161, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909452

RESUMO

The popularity of plant-based meat alternatives (PBMAs) has sparked a contentious debate about their influence on intestinal homeostasis compared to traditional animal-based meats. This study aims to explore the changes in gut microbial metabolites (GMMs) induced by the gut microbiota on different digested patties: beef meat and pea-protein PBMA. After digesting in vitro, untargeted metabolomics revealed 32 annotated metabolites, such as carnitine and acylcarnitines correlated with beef meat, and 45 annotated metabolites, like triterpenoids and lignans, linked to our PBMA. Secondly, (un)targeted approaches highlighted differences in GMM patterns during colonic fermentations. Our findings underscore significant differences in amino acids and their derivatives. Beef protein fermentation resulted in higher production of methyl-histidine, gamma-glutamyl amino acids, indoles, isobutyric and isovaleric acids. In contrast, PBMAs exhibit a significant release of N-acyl amino acids and unique dipeptides, like phenylalanine-arginine. This research offers valuable insights into how PBMAs and animal-based proteins differently modulate intestinal microenvironments.


Assuntos
Microbioma Gastrointestinal , Metabolômica , Animais , Bovinos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Pisum sativum/metabolismo , Pisum sativum/química , Pisum sativum/microbiologia , Fermentação , Proteínas de Plantas/metabolismo , Humanos , Aminoácidos/metabolismo , Aminoácidos/análise , Modelos Biológicos , Carne/análise
8.
Epilepsy Behav ; 157: 109899, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885595

RESUMO

Epilepsy a prevalent childhood neurological disorder, arises from chronic brain dysfunction caused by oversynchronized firing of neurons. Frequent seizures often lead to both physical and intellectual damage in children, seriously affecting their growth and development, life and health. Recent research studies have shown that the intestinal microbes in pediatric epilepsy is significantly different from that of healthy children, characterised by changes in the abundance of specific microbe communities and a reduction in diversity. These alterations may influence epileptic seizures through various pathways, including the microbiota-gut-brain axis by modulating neurotransmitters metabolism, affecting gut barrier function and immune responses, and directly impacting brain activity via the vagus nerves. This review highlights the alterations in gut microbes and their metabolites in epileptic children, analyzes their impact on seizures, and explores potential associations.


Assuntos
Epilepsia , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Epilepsia/microbiologia , Epilepsia/fisiopatologia , Criança , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/microbiologia
9.
Int J Med Sci ; 21(5): 882-895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617000

RESUMO

Purpose: Mounting evidence indicates that psychological stress adversely affects cancer progression including tumor growth and metastasis. The aim of this study was to investigate the role of chronic stress-induced microbiome perturbation in colorectal cancer (CRC) progression. Methods: Chronic restraint stress (CRS) was used to establish the chronic stress mouse model, behavioral tests were used for the CRS model evaluation. Subcutaneous xenograft model and lung metastasis model were established to investigate the growth and metastasis of CRC promoted by CRS exposure. 16S rRNA gene sequencing and liquid chromatograph-mass spectrometer (LC-MS) were applied to observe the effects of CRS exposure on the alteration of the gut microbiome and microbial metabolites. Bioinformatics analysis and correlation analyses were applied to analyse the changes in the frequency of body mass, tumor volume, inflammatory factors, neuroendocrine hormones and metabolites of the gut microbiota. Results: In this study, we identifed that CRS exposure model was appropriately constructed by achieving expected increases in disease activity index and enhanced depressive-like behaviors. CRS exposure can promote growth and metastasis of CRC. Besides, the data indicated that CRS exposure not only increased the neuro- and immune-inflammation, but also weakened the gut mucosal immunological function. The 16s rRNA gene sequencing data showed that CRS exposure increased the abundance of g_Ruminococcaceae_UCG_014. Furthermore, the LC-MS data indicated that with only 2 exceptions of carpaine and DG (15:0/20:4(5Z,8Z,11Z,14Z)/0:0), the majority of these 24 metabolites were less abundant in CRS-exposed mice. Bioinformatics analysis and correlation analyses indicated that only Ruminoscoccaceae-UCG-014 was significantly associated with inflammation (IL-6), neurotransmission (5-HT), and microbial metabolism (PS). Conclusion: CRS exposure altered diversity, composition and metabolites of the gut microbiome, with Ruminococcaceae_UCG-014 perturbation consistently correlated to inflammatory responses, suggesting a particular role of this bacterial genus in CRC growth and metastasis.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Inflamação
10.
Am J Clin Nutr ; 119(5): 1293-1300, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428740

RESUMO

BACKGROUND: Distinct circulating bile acid (BA) subtypes may play roles in regulating lipid homeostasis and atherosclerosis. OBJECTIVES: We investigated whether changes in circulating BA subtypes induced by weight-loss dietary interventions were associated with improved lipid profiles and atherosclerotic cardiovascular disease (ASCVD) risk estimates. METHODS: This study included adults with overweight or obesity (n = 536) who participated in a randomized weight-loss dietary intervention trial. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 mo after the weight-loss diet intervention. The ASCVD risk estimates were calculated using the validated equations. RESULTS: At baseline, higher concentrations of specific BA subtypes were related to higher concentrations of atherogenic very low-density lipoprotein lipid subtypes and ASCVD risk estimates. Weight-loss diet-induced decreases in primary BAs were related to larger reductions in triglycerides and total cholesterol [every 1 standard deviation (SD) decrease of glycocholate, glycochenodeoxycholate, or taurochenodeoxycholate was related to ß (standard error) -3.3 (1.3), -3.4 (1.3), or -3.8 (1.3) mg/dL, respectively; PFDR < 0.05 for all]. Greater decreases in specific secondary BA subtypes were also associated with improved lipid metabolism at 6 mo; there was ß -4.0 (1.1) mg/dL per 1-SD decrease of glycoursodeoxycholate (PFDR =0.003) for changes in low-density lipoprotein cholesterol. We found significant interactions (P-interaction < 0.05) between dietary fat intake and changes in BA subtypes on changes in ASCVD risk estimates; decreases in primary and secondary BAs (such as conjugated cholate or deoxycholate) were significantly associated with improved ASCVD risk after consuming a high-fat diet, but not after consuming a low-fat diet. CONCLUSIONS: Decreases in distinct BA subtypes were associated with improved lipid profiles and ASCVD risk estimates, highlighting the importance of changes in circulating BA subtypes as significant factors linked to improved lipid metabolism and ASCVD risk estimates in response to weight-loss dietary interventions. Habitual dietary fat intake may modify the associations of changes in BAs with ASCVD risk. This trial was registered at clinicaltrials.gov as NCT00072995.


Assuntos
Aterosclerose , Ácidos e Sais Biliares , Metabolismo dos Lipídeos , Sobrepeso , Humanos , Ácidos e Sais Biliares/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Aterosclerose/prevenção & controle , Adulto , Dieta Redutora , Fatores de Risco , Obesidade/metabolismo , Redução de Peso , Idoso , Doenças Cardiovasculares/prevenção & controle
11.
J Transl Med ; 22(1): 172, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369469

RESUMO

The global incidence of Chronic Kidney Disease (CKD) is steadily escalating, with discernible linkage to the intricate terrain of intestinal microecology. The intestinal microbiota orchestrates a dynamic equilibrium in the organism, metabolizing dietary-derived compounds, a process which profoundly impacts human health. Among these compounds, short-chain fatty acids (SCFAs), which result from microbial metabolic processes, play a versatile role in influencing host energy homeostasis, immune function, and intermicrobial signaling, etc. SCFAs emerge as pivotal risk factors influencing CKD's development and prognosis. This paper review elucidates the impact of gut microbial metabolites, specifically SCFAs, on CKD, highlighting their role in modulating host inflammatory responses, oxidative stress, cellular autophagy, the immune milieu, and signaling cascades. An in-depth comprehension of the interplay between SCFAs and kidney disease pathogenesis may pave the way for their utilization as biomarkers for CKD progression and prognosis or as novel adjunctive therapeutic strategies.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/uso terapêutico , Biomarcadores , Transdução de Sinais , Insuficiência Renal Crônica/tratamento farmacológico
12.
Int J Mol Med ; 53(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299236

RESUMO

Stroke, a debilitating cerebrovascular ailment, poses significant threats to human life and health. The intricate interplay between the gut­brain­microbiota axis (GBMA) and cerebral ischemia­reperfusion has increasingly become a focal point of scientific exploration, emerging as a pivotal research avenue in stroke pathophysiology. In the present review, the authors delved into the nexus between the GBMA and neuroinflammation observed post­stroke. The analysis underscored the pivotal roles of histone deacetylase 3 and neutrophil extracellular traps subsequent to stroke incidents. The influence of gut microbial compositions and their metabolites, notably short­chain fatty acids and trimethylamine N­oxide, on neuroinflammatory processes, was further elucidated. The involvement of immune cells, especially regulatory T­cells, and the intricate signaling cascades including cyclic GMP­AMP synthase/stimulator of interferon genes/Toll­like receptor, further emphasized the complex regulatory mechanisms of GBMA in cerebral ischemia/reperfusion injury (CI/RI). Collectively, the present review offered a comprehensive perspective on the metabolic, immune and inflammatory modulations orchestrated by GBMA, augmenting the understanding of its role in neuroinflammation following CI/RI.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Doenças Neuroinflamatórias , Eixo Encéfalo-Intestino , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Traumatismo por Reperfusão/metabolismo
13.
Metabolites ; 14(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248847

RESUMO

Engineered microorganisms such as the probiotic strain Escherichia coli Nissle 1917 (EcN) offer a strategy to sense and modulate the concentration of metabolites or therapeutics in the gastrointestinal tract. Here, we present an approach to regulate the production of the depression-associated metabolite gamma-aminobutyric acid (GABA) in EcN using genetic circuits that implement negative feedback. We engineered EcN to produce GABA by overexpressing glutamate decarboxylase and applied an intracellular GABA biosensor to identify growth conditions that improve GABA biosynthesis. We next employed characterized genetically encoded NOT gates to construct genetic circuits with layered feedback to control the rate of GABA biosynthesis and the concentration of GABA produced. Looking ahead, this approach may be utilized to design feedback control of microbial metabolite biosynthesis to achieve designable smart microbes that act as living therapeutics.

14.
Biomolecules ; 13(11)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002360

RESUMO

(1) Background: A large and diverse microbial population exists in the human intestinal tract, which supports gut homeostasis and the health of the host. Short-chain fatty acid (SCFA)-secreting microbes also generate several metabolites with favorable regulatory effects on various malignancies and immunological inflammations. The involvement of intestinal SCFAs in kidney diseases, such as various kidney malignancies and inflammations, has emerged as a fascinating area of study in recent years. However, the mechanisms of SCFAs and other metabolites produced by SCFA-producing bacteria against kidney cancer and inflammation have not yet been investigated. (2) Methods: We considered 177 different SCFA-producing microbial species and 114 metabolites from the gutMgene database. Further, we used different online-based database platforms to predict 1890 gene targets associated with metabolites. Moreover, DisGeNET, OMIM, and Genecard databases were used to consider 13,104 disease-related gene targets. We used a Venn diagram and various protein-protein interactions (PPIs), KEGG pathways, and GO analyses for the functional analysis of gene targets. Moreover, the subnetwork of protein-protein interactions (through string and cytoscape platforms) was used to select the top 20% of gene targets through degree centrality, betweenness centrality, and closeness centrality. To screen the possible candidate compounds, we performed an analysis of the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of metabolites and then found the best binding affinity using molecular docking simulation. (3) Results: Finally, we found the key gene targets that interact with suitable compounds and function against kidney cancer and inflammation, such as MTOR (with glycocholic acid), PIK3CA (with 11-methoxycurvularin, glycocholic acid, and isoquercitrin), IL6 (with isoquercitrin), PTGS2 (with isoquercitrin), and IGF1R (with 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, isoquercitrin), showed a lower binding affinity. (4) Conclusions: This study provides evidence to support the positive effects of SCFA-producing microbial metabolites that function against kidney cancer and inflammation and makes integrative research proposals that may be used to guide future studies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Inflamação , Ácido Glicocólico
15.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894734

RESUMO

The gut microbiota undergoes metabolic processes to produce by-products (gut metabolites), which play a vital role in the overall maintenance of health and prevention of disease within the body. However, the use of gut metabolites as anticancer agents and their molecular mechanisms of action are largely unknown. Therefore, this study evaluated the anti-proliferative effects of three key gut microbial metabolites-sodium butyrate, inosine, and nisin, against MCF7 and MDA-MB-231 breast adenocarcinoma cell lines. To determine the potential mechanistic action of these gut metabolites, flow cytometric assessments of apoptotic potential, reactive oxygen species (ROS) production measurements and proteomics analyses were performed. Sodium butyrate exhibited promising cytotoxicity, with IC50 values of 5.23 mM and 5.06 mM against MCF7 and MDA-MB-231 cells, respectively. All three metabolites were found to induce apoptotic cell death and inhibit the production of ROS in both cell lines. Nisin and inosine indicated a potential activation of cell cycle processes. Sodium butyrate indicated the possible initiation of signal transduction processes and cellular responses to stimuli. Further investigations are necessary to ascertain the effective therapeutic dose of these metabolites, and future research on patient-derived tumour spheroids will provide insights into the potential use of these gut metabolites in cancer therapy.


Assuntos
Adenocarcinoma , Microbioma Gastrointestinal , Nisina , Humanos , Nisina/farmacologia , Ácido Butírico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Adenocarcinoma/tratamento farmacológico , Inosina
16.
Front Endocrinol (Lausanne) ; 14: 1211015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745723

RESUMO

Aims/hypothesis: Appearance of multiple islet cell autoantibodies in early life is indicative of future progression to overt type 1 diabetes, however, at varying rates. Here, we aimed to study whether distinct metabolic patterns could be identified in rapid progressors (RP, disease manifestation within 18 months after the initial seroconversion to autoantibody positivity) vs. slow progressors (SP, disease manifestation at 60 months or later from the appearance of the first autoantibody). Methods: Longitudinal samples were collected from RP (n=25) and SP (n=41) groups at the ages of 3, 6, 12, 18, 24, or ≥ 36 months. We performed a comprehensive metabolomics study, analyzing both polar metabolites and lipids. The sample series included a total of 239 samples for lipidomics and 213 for polar metabolites. Results: We observed that metabolites mediated by gut microbiome, such as those involved in tryptophan metabolism, were the main discriminators between RP and SP. The study identified specific circulating molecules and pathways, including amino acid (threonine), sugar derivatives (hexose), and quinic acid that may define rapid vs. slow progression to type 1 diabetes. However, the circulating lipidome did not appear to play a major role in differentiating between RP and SP. Conclusion/interpretation: Our study suggests that a distinct metabolic profile is linked with the type 1 diabetes progression. The identification of specific metabolites and pathways that differentiate RP from SP may have implications for early intervention strategies to delay the development of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Criança , Metabolômica , Aminoácidos , Autoanticorpos
17.
Trends Endocrinol Metab ; 34(8): 489-501, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336645

RESUMO

Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.


Assuntos
Enterite , Microbioma Gastrointestinal , Neoplasias , Lesões por Radiação , Humanos , Qualidade de Vida , Enterite/etiologia , Lesões por Radiação/complicações , Neoplasias/complicações , Regeneração , Microambiente Tumoral
18.
Biochem Pharmacol ; 214: 115659, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330020

RESUMO

The renin-angiotensin system (RAS) consists of multiple angiotensin peptides and performs various biological functions mediated by distinct receptors. Angiotensin II (Ang II) is the major effector of the RAS and affects the occurrence and development of inflammation, diabetes mellitus and its complications, hypertension, and end-organ damage via the Ang II type 1 receptor. Recently, considerable interest has been given to the association and interaction between the gut microbiota and host. Increasing evidence suggests that the gut microbiota may contribute to cardiovascular diseases, obesity, type 2 diabetes mellitus, chronic inflammatory diseases, and chronic kidney disease. Recent data have confirmed that Ang II can induce an imbalance in the intestinal flora and further aggravate disease progression. Furthermore, angiotensin converting enzyme 2 is another player in RAS, alleviates the deleterious effects of Ang II, modulates gut microbial dysbiosis, local and systemic immune responses associated with coronavirus disease 19. Due to the complicated etiology of pathologies, the precise mechanisms that link disease processes with specific characteristics of the gut microbiota remain obscure. This review aims to highlight the complex interactions between the gut microbiota and its metabolites in Ang II-related disease progression, and summarize the possible mechanisms. Deciphering these mechanisms will provide a theoretical basis for novel therapeutic strategies for disease prevention and treatment. Finally, we discuss therapies targeting the gut microbiota to treat Ang II-related disorders.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Angiotensina II/metabolismo , Sistema Renina-Angiotensina/fisiologia , Progressão da Doença , Peptidil Dipeptidase A/metabolismo
19.
Front Microbiol ; 14: 1157451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125171

RESUMO

Background: Previous studies have implicated a vital association between gut microbiota/gut microbial metabolites and low back pain (LBP), but their causal relationship is still unclear. Therefore, we aim to comprehensively investigate their causal relationship and identify the effect of gut microbiota/gut microbial metabolites on risk of LBP using a two-sample Mendelian randomization (MR) study. Methods: Summary data from genome-wide association studies (GWAS) of gut microbiota (18,340 participants), gut microbial metabolites (2,076 participants) and LBP (FinnGen biobank) were separately obtained. The inverse variance-weighted (IVW) method was used as the main MR analysis. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were conducted to evaluate the horizontal pleiotropy and to eliminate outlier single-nucleotide polymorphisms (SNPs). Cochran's Q-test was applied for heterogeneity detection. Besides, leave-one-out analysis was conducted to determine whether the causal association signals were driven by any single SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse causation. Results: We discovered that 20 gut microbial taxa and 2 gut microbial metabolites were causally related to LBP (p < 0.05). Among them, the lower level of family Ruminococcaceae (OR: 0.771, 95% CI: 0.652-0.913, FDR-corrected p = 0.045) and Lactobacillaceae (OR: 0.875, 95% CI: 0.801-0.955, FDR-corrected p = 0.045) retained a strong causal relationship with higher risk of LBP after the Benjamini-Hochberg Corrected test. The Cochrane's Q test revealed no Heterogeneity (p > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy (p > 0.05). Furthermore, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the 17 gut microbial taxa exposure-outcome effect were significantly attenuated and tended to be null. Conclusion: Our findings confirm the the potential causal effect of specific gut microbiota and gut microbial metabolites on LBP, which offers new insights into the gut microbiota-mediated mechanism of LBP and provides the theoretical basis for further explorations of targeted prevention strategies.

20.
Front Microbiol ; 14: 1097148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125201

RESUMO

The gut microbiome is critically involved in maintaining normal physiological function in the host. Recent studies have revealed that alterations in the gut microbiome contribute to the development and progression of cerebrovascular disease via the microbiota-gut-brain axis (MGBA). As a broad communication network in the human body, MGBA has been demonstrated to have significant interactions with various factors, such as brain structure and function, nervous system diseases, etc. It is also believed that the species and composition of gut microbiota and its metabolites are intrinsically linked to vascular inflammation and immune responses. In fact, in fecal microbiota transplantation (FMT) research, specific gut microbiota and downstream-related metabolites have been proven to not only participate in various physiological processes of human body, but also affect the occurrence and development of cerebrovascular diseases directly or indirectly through systemic inflammatory immune response. Due to the high mortality and disability rate of cerebrovascular diseases, new treatments to improve intestinal dysbacteriosis have gradually attracted widespread attention to better ameliorate the poor prognosis of cerebrovascular diseases in a non-invasive way. This review summarizes the latest advances in the gut microbiome and cerebrovascular disease research and reveals the profound impact of gut microbiota dysbiosis and its metabolites on cerebrovascular diseases. At the same time, we elucidated molecular mechanisms whereby gut microbial metabolites regulate the expression of specific interleukins in inflammatory immune responses. Moreover, we further discuss the feasibility of novel therapeutic strategies targeting the gut microbiota to improve the outcome of patients with cerebrovascular diseases. Finally, we provide new insights for standardized diagnosis and treatment of cerebrovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA