Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Adv Exp Med Biol ; 1460: 821-850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287873

RESUMO

There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.


Assuntos
Neoplasias da Mama , Senescência Celular , Obesidade , Telomerase , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Obesidade/genética , Obesidade/metabolismo , Telomerase/metabolismo , Telomerase/genética , Encurtamento do Telômero , Telômero/metabolismo , Telômero/genética , Leptina/metabolismo , Leptina/genética , Animais
2.
Nutrients ; 16(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339719

RESUMO

BACKGROUND: Fasting potentially alters the aging process induced by obesity by regulating telomere integrity, which is related to longevity genes. However, the impact of periodic fasting (PF) on the expression of longevity genes, particularly Forkhead Box O Transcription Factors (FOXO3a) and the Human Telomerase Reverse Transcriptase (hTERT), is not fully understood. This study aimed to analyze the effects of PF, specifically on FOXO3a, hTERT expression, and other associated factors. METHODS: A quasi-experimental 10-day study was conducted in Surabaya, East Java, Indonesia. This study consisted of an intervention group (PFG), which carried out PF for ten days using a daily 12 h time-restricted eating protocol, and a control group (CG), which had daily meals as usual. FOXO3a and hTERT expression were analyzed by quantitative real-time qPCR. A paired t-test/Wilcoxon test, independent t-test/Mann-Whitney U-test, and Spearman's correlation test were used for statistical analysis. RESULT: Thirty-six young men participated in this study. During the post-test period, FOXO3a expression in the PFG increased 28.56 (±114.05) times compared to the pre-test, but the difference was not significant. hTERT expression was significantly higher in both the CG and PFG. The hTERT expression in the PFG was 10.26 (±8.46) times higher than in the CG, which was only 4.73 (±4.81) times higher. There was also a positive relationship between FOXO and hTERT in the CG. CONCLUSIONS: PF significantly increased hTERT expression in the PFG; however, no significant increase was found in FOXO3a expression. PF regimens using the 12 h time-restricted eating approach may become a potential strategy for preventing obesity-induced premature aging by regulating longevity gene expression.


Assuntos
Jejum , Proteína Forkhead Box O3 , Longevidade , Obesidade , Sobrepeso , Telomerase , Humanos , Masculino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Longevidade/genética , Obesidade/genética , Telomerase/genética , Telomerase/metabolismo , Sobrepeso/genética , Adulto , Adulto Jovem , Indonésia , Regulação da Expressão Gênica
3.
J Biochem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115281

RESUMO

Primary cilia are thin hair-like organelles that protrude from the surface of most mammalian cells. They act as specialized cell antennas that can vary widely in response to specific stimuli. However, the effect of changes in cilia length on cellular signaling and behavior remains unclear. Therefore, we aimed to characterize the elongated primary cilia induced by different chemical agents, lithium chloride (LiCl), cobalt chloride (CoCl2), and rotenone, using human retinal pigmented epithelial 1 (hRPE1) cells expressing ciliary G protein-coupled receptor (GPCR), melanin-concentrating hormone (MCH) receptor 1 (MCHR1). MCH induces cilia shortening mainly via MCHR1-mediated Akt phosphorylation. Therefore, we verified the proper functioning of the MCH-MCHR1 axis in elongated cilia. Although MCH shortened cilia that were elongated by LiCl and rotenone, it did not shorten CoCl2-induced elongated cilia, which exhibited lesser Akt phosphorylation. Furthermore, serum readdition was found to delay cilia shortening in CoCl2-induced elongated cilia. In contrast, rotenone-induced elongated cilia rapidly shortened via a chopping mechanism at the tip of the cilia. Conclusively, we found that each chemical exerted different effects on ciliary GPCR signaling and serum-mediated ciliary structure dynamics in cells with elongated cilia. These results provide a basis for understanding the functional consequences of changes in ciliary length.

4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1224-1229, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39192424

RESUMO

OBJECTIVE: To explore whether Resveratrol (RSV) can inhibit the spontaneous senescence of human bone marrow-derived mesenchymal stem cells (MSC). METHODS: MSC were serially cultured to passage 13 and passage 15 to establish model groups exhibiting spontaneous senescence, respectively. MSC at passage 13 and passage 15 were treated with 5 nmol/L RSV for 48 h to establish the RSV-treated groups. SA-ß-Gal staining was used to detect cell senescence. MTT assay was used to detect cell proliferation. RT-PCR method was used to detect senescenceassociated telomerase activity. Western blot was used to detect the senescence-associated protein level of the phosphorylated-mTOR. RESULTS: SA-ß-Gal staining showed that the senescent cells of MSC in RSV-treated group was significantly less than those in the model group (RSV group compared with model group at passage 13, P < 0.05; RSV group compared with model group at passage 15, P < 0.01). The cell proliferation ability of MSC in RSV-treated group was significantly higher than those in model group, at 72 h in passage 13, there was significant difference between RSV-treated group and model group (P < 0.05). RT-PCR results showed that the hTERT mRNA expression of MSC in RSV-treated group was higher than that in model group, which was significantly different between RSV-treated group and model group at passage 13 (P < 0.05). Western blot results showed that the phosphorylated (Ser2448)-mTOR level of MSC in RSV-treated group was lower than that in model group, which was significantly different between RSV-treated group and model group at passage 13 (P < 0.05). CONCLUSION: RSV can inhibit the spontaneous senescence of human MSC by mediating mTOR activity.


Assuntos
Células da Medula Óssea , Proliferação de Células , Senescência Celular , Células-Tronco Mesenquimais , Resveratrol , Serina-Treonina Quinases TOR , Telomerase , Humanos , Resveratrol/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Senescência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células da Medula Óssea/citologia , Células Cultivadas , Telomerase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Estilbenos/farmacologia
5.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201386

RESUMO

Glioblastoma (GBM) is a primary CNS tumor that is highly lethal in adults and has limited treatment options. Despite advancements in understanding the GBM biology, the standard treatment for GBM has remained unchanged for more than a decade. Only 6.8% of patients survive beyond five years. Telomerase, particularly the hTERT promoter mutations present in up to 80% of GBM cases, represents a promising therapeutic target due to its role in sustaining telomere length and cancer cell proliferation. This review examines the biology of telomerase in GBM and explores potential telomerase-targeted therapies. We conducted a systematic review following the PRISMA-P guidelines in the MEDLINE/PubMed and Scopus databases, from January 1995 to April 2024. We searched for suitable articles by utilizing the terms "GBM", "high-grade gliomas", "hTERT" and "telomerase". We incorporated studies addressing telomerase-targeted therapies into GBM studies, excluding non-English articles, reviews, and meta-analyses. We evaluated a total of 777 records and 46 full texts, including 36 studies in the final review. Several compounds aimed at inhibiting hTERT transcription demonstrated promising preclinical outcomes; however, they were unsuccessful in clinical trials owing to intricate regulatory pathways and inadequate pharmacokinetics. Direct hTERT inhibitors encountered numerous obstacles, including a prolonged latency for telomere shortening and the activation of the alternative lengthening of telomeres (ALT). The G-quadruplex DNA stabilizers appeared to be potential indirect inhibitors, but further clinical studies are required. Imetelstat, the only telomerase inhibitor that has undergone clinical trials, has demonstrated efficacy in various cancers, but its efficacy in GBM has been limited. Telomerase-targeted therapies in GBM is challenging due to complex hTERT regulation and inadequate inhibitor pharmacokinetics. Our study demonstrates that, despite promising preclinical results, no Telomerase inhibitors have been approved for GBM, and clinical trials have been largely unsuccessful. Future strategies may include Telomerase-based vaccines and multi-target inhibitors, which may provide more effective treatments when combined with a better understanding of telomere dynamics and tumor biology. These treatments have the potential to be integrated with existing ones and to improve the outcomes for patients with GBM.


Assuntos
Glioblastoma , Telomerase , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Telômero/metabolismo , Telômero/efeitos dos fármacos , Animais
6.
Front Med (Lausanne) ; 11: 1450147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188883

RESUMO

Background: Breast cancer shows significant clinical, morphologic, and molecular variation. Telomeres are nucleoprotein complexes composed of hexanucleotide repeat DNA sequence, TTAGGG, and numerous telomere-associated proteins. The maintenance of telomere length is carried out by a ribonucleoprotein called telomerase, which consists of two main components: a catalytic subunit called hTERT (human telomerase reverse transcriptase) and an RNA template called hTR (human telomerase RNA). The importance of evaluating hTERT expression lies in its potential therapeutic application, being an attractive target due to its almost non-existent expression in normal somatic cells. It is also expected that the anti-neoplastic effect would appear earlier in neoplastic cells with shorter telomeres. Additionally, a significant relationship has been observed between Her2-Neu overexpression and Her2-Neu positivity, which could suggest new combined therapies.The aim of this study was to detect the expression of hTERT, estrogen receptor (ER), progesterone receptor (PR), and HER2-Neu in neoplastic breast tissue embedded in paraffin before treatment and to investigate the relationship between them and with baseline and post-treatment telomere length, as well as with various clinicopathological parameters. Materials and methods: A cross-sectional-correlational, 21 women diagnosed with breast cancer at the Oncology Service of the High Specialty Medical Unit No. 1 of Bajio of the Mexican Institute of Social Security. The study complies with the Helsinki Declaration and was approved by the Institutional Ethical Committee of the Mexican Institute of Social Security (R-2019-1001-127). A peripheral blood sample was obtained before oncological treatment and at the end of oncological treatment for the measurement of telomere length by extracting DNA from leukocytes, was performed by the quantitative polymerase chain reaction (PCR) method described by Cawthon. Tumor samples were collected from each patient at the oncology department for immunohistochemical determination of biomarker expression (ER, PR, Her2/neu) and hTERT. Results: Of the 21 cases included in the study, the median age was 57.57 years. Eighteen cases were classified as invasive ductal carcinoma NOS (85.71%), 10 were histologic grade 2 (47.61%), 16 cases were hormone receptor positive (76.19%), 7 were Her2Neu positive (33.33%), and only 2 cases were triple negative (9.52%). Positive hTERT expression was detected in 11 cases (52.38%) and was negative in the remaining cases. A significant association was identified between hTERT-positive cases and Her2-Neu positive cases (p = 0.04). Baseline and post-treatment telomere lengths showed a significant difference using the non-parametric Wilcoxon t-test (p = 0.002). In hTERT-positive cases, there was significant telomere shortening at the end of oncological treatment (6.14 ± 1.54 vs. 4.75 ± 1.96 Kb, p = 0.007). Conclusion: Positive hTERT immunostaining cases were associated with poor prognostic factors, such as Her2-Neu overexpression and post-treatment telomere shortening. In the future, hTERT immunostaining could be used to select patients for therapies with antagonistic effects on hTERT, as well as in the selection of more appropriate chemotherapy regimens for patients who express it.

7.
Exp Gerontol ; 194: 112508, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986855

RESUMO

hTERT gene therapies hold significant promise for treating age-related diseases. However, further research is required to address the challenges of delivery and ethical considerations. We hypothesized that exosomes derived from hTERT-immortalized cells could function similarly to hTERT gene therapies by maintaining telomere length and attenuating cellular senescence biomarkers. In this study, we overexpressed the hTERT gene in Human Foreskin Fibroblast-1 cells (HFF cells) to produce hTERT-immortalized HFF cells (hT-HFF cells). We then used exosomes derived from these hT-HFF cells to treat human fibroblasts, HFF cells. Our results demonstrated that these exosomes effectively attenuated biomarkers of cellular senescence in HFF cells. Furthermore, analysis revealed that hTERT mRNA was indeed packaged into the exosomes from hT-HFF cells. This mRNA was capable of elongating telomeres and delaying cellular senescence in HFF cells. Therefore, exosomes from hT-HFF cells show potential as a treatment for age-related diseases.


Assuntos
Senescência Celular , Exossomos , Fibroblastos , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/genética , Senescência Celular/fisiologia , Exossomos/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo , Telômero/metabolismo , Homeostase do Telômero/fisiologia , Linhagem Celular
8.
Mol Neurobiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958888

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder that affects memory and cognitive abilities, affecting millions of people around the world. Current treatments focus on the management of symptoms, as no effective therapy has been approved to modify the underlying disease process. Gene therapy is a promising approach that can offer disease-modifying treatment for AD, targeting various aspects of the pathophysiology of the disease. This review presents a comprehensive overview of the current state of gene therapy research for AD, with a specific focus on clinical trials and preclinical studies that have used nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), apolipoprotein E2 (APOE2), and human telomerase reverse transcriptase (hTERT) as therapeutic gene therapy approaches. These gene targets have shown potential to alleviate the neuropathology of AD in animal studies and have demonstrated feasibility and safety in non-human primates. Despite the failure of the NGF gene therapy approach in clinical trials, we have reviewed and highlighted the reported findings and evaluations from the trials. Furthermore, the review included the conclusions of postmortem brain tissue analysis of AD patients who received NGF gene therapy. The goal is to learn from the failed trials and improve the approach in the future. Although gene therapy shows promise, it faces several challenges and limitations, including optimizing gene delivery methods, enhancing safety and efficacy profiles, and determining long-term results. This review contributes to the growing body of literature on innovative treatments for AD and highlights the need for more research and development to advance gene therapy as a viable treatment option for AD.

9.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000438

RESUMO

Strong epigenetic pan-cancer biomarkers are required to meet several current, urgent clinical needs and to further improve the present chemotherapeutic standard. We have concentrated on the investigation of epigenetic alteration of the hTERT gene, which is frequently epigenetically dysregulated in a number of cancers in specific developmental stages. Distinct DNA methylation profiles were identified in our data on early urothelial cancer. An efficient EpihTERT assay could be developed utilizing suitable combinations with sequence-dependent thermodynamic parameters to distinguish between differentially methylated states. We infer from this data set, the epigenetic context, and the related literature that a CpG-rich, 2800 bp region, a prominent CpG island, surrounding the transcription start of the hTERT gene is the crucial epigenetic zone for the development of a potent biomarker. In order to accurately describe this region, we have named it "Acheron" (Ἀχέρων). In Greek mythology, this is the river of woe and misery and the path to the underworld. Exploitation of the DNA methylation profiles focused on this region, e.g., idiolocal normalized Methylation Specific PCR (IDLN-MSP), opens up a wide range of new possibilities for diagnosis, determination of prognosis, follow-up, and detection of residual disease. It may also have broad implications for the choice of chemotherapy.


Assuntos
Biomarcadores Tumorais , Metilação de DNA , Epigênese Genética , Neoplasias , Telomerase , Humanos , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Ilhas de CpG , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Telomerase/genética
10.
J Mol Med (Berl) ; 102(9): 1089-1100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39042290

RESUMO

MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Telomerase , Homeostase do Telômero , Telômero , Humanos , Telomerase/genética , Telomerase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Homeostase do Telômero/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Telômero/metabolismo , Telômero/genética , Animais
11.
FASEB J ; 38(12): e23735, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860936

RESUMO

Identification of potential key targets of melanoma, a fatal skin malignancy, is critical to the development of new cancer therapies. Lysine methyltransferase 2A (KMT2A) promotes melanoma growth by activating the human telomerase reverse transcriptase (hTERT) signaling pathway; however, the exact mechanism remains elusive. This study aimed to reveal new molecular targets that regulate KMT2A expression and melanoma growth. Using biotin-streptavidin-agarose pull-down and proteomics, we identified Damage-specific DNA-binding protein 2 (DDB2) as a KMT2A promoter-binding protein in melanoma cells and validated its role as a regulator of KMT2A/hTERT signaling. DDB2 knockdown inhibited the expression of KMT2A and hTERT and inhibited the growth of melanoma cells in vitro. Conversely, overexpression of DDB2 activated the expression of KMT2A and promoted the growth of melanoma cells. Additionally, we demonstrated that DDB2 expression was higher in tumor tissues of patients with melanoma than in corresponding normal tissues and was positively correlated with KMT2A expression. Kaplan-Meier analysis showed a poor prognosis in patients with high levels of DDB2 and KMT2A. Overall, our data suggest that DDB2 promotes melanoma cell growth through the transcriptional regulation of KMT2A expression and predicts poor prognosis. Therefore, targeting DDB2 may regulate the effects of KMT2A on melanoma growth and progression, providing a new potential therapeutic strategy for melanoma.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Melanoma , Proteína de Leucina Linfoide-Mieloide , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Prognóstico , Linhagem Celular Tumoral , Feminino , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
12.
Cells ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891017

RESUMO

Telomeres, potential biomarkers of aging, are known to shorten with continued cigarette smoke exposure. In order to further investigate this process and its impact on cellular stress and inflammation, we used an in vitro model with cigarette smoke extract (CSE) and observed the downregulation of telomere stabilizing TRF2 and POT1 genes after CSE treatment. hTERT is a subunit of telomerase and a well-known oncogenic marker, which is overexpressed in over 85% of cancers and may contribute to lung cancer development in smokers. We also observed an increase in hTERT and ISG15 expression levels after CSE treatment, as well as increased protein levels revealed by immunohistochemical staining in smokers' lung tissue samples compared to non-smokers. The effects of ISG15 overexpression were further studied by quantifying IFN-γ, an inflammatory protein induced by ISG15, which showed greater upregulation in smokers compared to non-smokers. Similar changes in gene expression patterns for TRF2, POT1, hTERT, and ISG15 were observed in blood and buccal swab samples from smokers compared to non-smokers. The results from this study provide insight into the mechanisms behind smoking causing telomere shortening and how this may contribute to the induction of inflammation and/or tumorigenesis, which may lead to comorbidities in smokers.


Assuntos
Envelhecimento , Citocinas , Inflamação , Complexo Shelterina , Fumar , Telomerase , Telômero , Proteína 2 de Ligação a Repetições Teloméricas , Humanos , Inflamação/genética , Inflamação/patologia , Envelhecimento/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Citocinas/metabolismo , Telômero/metabolismo , Telomerase/metabolismo , Telomerase/genética , Fumar/efeitos adversos , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Interferon gama/metabolismo , Homeostase do Telômero , Masculino , Encurtamento do Telômero , Feminino , Pessoa de Meia-Idade
13.
Stem Cell Rev Rep ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878252

RESUMO

BACKGROUND: Stem cells from human exfoliated deciduous teeth (SHED) hold promise in regenerative medicine owing to their multipotent capabilities resembling mesenchymal stem cells (MSCs). Despite their potential, SHED have not been extensively investigated because their limited lifespan and unavailability of cell-lines pose challenges for therapeutic applications. This study investigated the effect of ectopic human telomerase reverse transcriptase (hTERT) expression on SHEDs' proliferation while preserving stemness and genomic integrity. METHODS: Deciduous teeth were collected from children aged 6-10 years. After isolation and characterization, the SHED were transduced with pBabe-puro-hTERT retrovirus to establish SHED cell-line, which was evaluated and compared with pBabe-puro (mock control) for stemness, multipotency and growth attributes through flow cytometry, trilineage differentiation, and growth kinetics. We also estimated hTERT gene expression, genomic integrity, and validated cell-line through STR analysis. RESULTS: Following hTERT transduction, SHED displayed elevated hTERT gene expression while retaining fibroblast-like morphology and mesenchymal stem cell markers. Moreover, after hTERT transduction cellular shape remained same along with increased replicative lifespan and proliferation potential. SHED-hTERT cells exhibited multi-potency and maintained stemness, as evidenced by surface marker expression and multilineage differentiation. Furthermore, genomic integrity was not affected by hTERT integration, as confirmed by STR analysis and CDKN2A gene assessment. CONCLUSION: Ectopic hTERT expression in SHED successfully prolonged their replicative lifespan and improved their ability to proliferate and migrate, while preserving their stemness, multipotency and genomic integrity, suggesting minimal carcinogenic risk. Establishment of SHED cell-line holds potential in regenerative medicine applications, especially in cell-based drugs and tissue engineering experiments.

14.
Front Immunol ; 15: 1326728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915394

RESUMO

Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for ß-galactosidase revealed a significantly lower number of ß-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.


Assuntos
Fibroblastos , Queloide , Telomerase , Humanos , Queloide/patologia , Queloide/metabolismo , Fibroblastos/metabolismo , Telomerase/genética , Telomerase/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
15.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786083

RESUMO

As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.


Assuntos
Células Epiteliais , Vesículas Extracelulares , Células-Tronco Mesenquimais , Epitélio Pigmentado da Retina , Telomerase , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Vesículas Extracelulares/metabolismo , Telomerase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia
16.
Narra J ; 4(1): e680, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38798828

RESUMO

The antiproliferative properties of metformin and silodosin have been observed in prostate cancer. Furthermore, it is hypothesized that the molecular pathways related to these drugs may impact the levels of human telomerase reverse transcriptase (hTERT) in prostate cancer cells. The aim of this study was to assess the effect of metformin and silodosin on the levels of hTERT in metastatic castration-resistant prostate cancer (mCRPC) cells. The present study employed an experimental design with a post-test-only control group. This study utilized the PC3 cell line as a model for mCRPC. A viability experiment was conducted using the CCK-8 method to determine the inhibitory concentration (IC50) values of metformin, silodosin, and abiraterone acetate (AA) after a 72-hour incubation period of PC3 cells. In order to investigate the levels of hTERT, PC3 cells were divided into two control groups: a negative control and a standard therapy with AA. Additionally, three experimental combination groups were added: metformin with AA; silodosin with AA; and metformin, silodosin and AA. The level of hTERT was measured using sandwich ELISA technique. The difference in hTERT levels was assessed using ANOVA followed by a post hoc test. The IC50 values for metformin, silodosin, and AA were 17.7 mM, 44.162 mM, and 66.9 µM, respectively. Our data indicated that the combination of metformin with AA and the combination of metformin, silodosin and AA decreased the hTERT levels when compared to control, AA, and silodosin with AA. The administration of metformin resulted in a reduction of hTERT levels in the PC3 cell line, but the impact of silodosin on hTERT levels was not statistically significant compared to AA group.


Assuntos
Indóis , Metformina , Neoplasias de Próstata Resistentes à Castração , Telomerase , Humanos , Metformina/farmacologia , Metformina/administração & dosagem , Metformina/uso terapêutico , Telomerase/metabolismo , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Indóis/farmacologia , Indóis/administração & dosagem , Indóis/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Androstenos
17.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38757346

RESUMO

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Assuntos
Adenoviridae , Proteínas de Ligação a DNA , Endonucleases , Vírus Oncolíticos , Neoplasias Ovarianas , RNA Interferente Pequeno , Feminino , Humanos , Adenoviridae/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Endonucleases/genética , Endonucleases/metabolismo , Vetores Genéticos/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
18.
J Med Virol ; 96(5): e29665, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738582

RESUMO

The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.


Assuntos
Neoplasias , Telomerase , Telômero , Telomerase/metabolismo , Telomerase/genética , Humanos , Neoplasias/virologia , Neoplasias/genética , Telômero/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 4/fisiologia , RNA/metabolismo , RNA/genética
19.
Clin Exp Optom ; : 1-6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755754

RESUMO

CLINICAL RELEVANCE: The behaviour of human telomerase reverse transcriptase (hTERT) in tears reflects its role in maintaining the ocular surface homoeostasis, as it is increased after the initial fitting of contact lenses and post-overnight lid closure. BACKGROUND: hTERT has been shown to respond to cellular stress in neurodegenerative diseases and to enhance axonal regeneration after peripheral axotomy in an animal model. This work investigated whether the behaviour of hTERT in the tear film reflects ocular surface inflammation and neuronal changes in the presence of dry eye disease. METHODS: Flush tears were collected from 18 participants with dry eye disease (14 females, 4 males, mean age 34.7 ± 5.2 years) and from 18 healthy participants without dry eye disease (8 females, 10 males, mean age 31.9 ± 5.8 years). Dry eye disease status was defined using the TFOS DEWS II diagnostic criteria. hTERT levels in tears were measured using enzyme-linked immunosorbent assays. Confocal images were taken at the level of the subbasal nerve plexus at the central cornea and at the inferior whorl, and the densities of corneal immune cells were evaluated as well as corneal nerve morphology metrics using a fully automated technique (University of Manchester, United Kingdom). RESULTS: In participants with dry eye disease, hTERT levels were significantly higher compared to controls (median [interquartile range]: 434 [320-600] ng/ml, and 184 [42-390] ng/ml, respectively, p = 0.01). Increased nerve fibre width at the inferior whorl, was seen in those with dry eyes (0.0219 [0.0214-0.0236] mm/mm compared to controls 0.0217 [0.0207 0.0222] p < 0.001), but no significant differences were found in the density of corneal immune cells. CONCLUSIONS: hTERT levels were elevated in participants with dry eye disease, and this was accompanied by increased nerve thickness in the inferior cornea. The hTERT response may reflect the stress induced to the ocular surface and corneal nerves due to having dry eye disease.

20.
Biomedicines ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540262

RESUMO

The NK cell exhaustion state evolving during extensive and prolonged cultivation is still one of the limitations of NK cell approaches. In this research, we transduced NK cells with the hTERT and iCasp9 genes. hTERT overexpression can prevent the functional exhaustion of NK cells during long-term cultivation, but, still, the therapeutic use of such cells is unsafe without irradiation. To overcome this obstacle, we additionally transduced NK cells with the iCasp9 transgene that enables the rapid elimination of modified cells. We compared the proliferative and functional activities of the hTERT- and/or iCasp9-modified NK cells, determined their exhaustion state and monitored the levels of EOMES and T-BET, the main NK cell transcription factors. The hTERT and iCasp9 genes were shown to affect the EOMES and T-BET levels differently in the NK cells. The EOMES+T-BET+ phenotype characterized the functionally active NK cells during two months of culture upon stimulation with IL2 and K562-mbIL21 feeder cells, which induced the greatest expansion rates of the NK cells, independently of the transgene type. On the other hand, under cytokine stimulation, the hTERT-iCasp9-NK cells displayed improved proliferation over NK cells modified with iCasp9 alone and showed an increased proliferation rate compared to the untransduced NK cells under stimulation with IL2 and IL15, which was accompanied by reduced immune checkpoint molecule expression. The individual changes in the EOMES and T-BET levels strictly corresponded to the NK cell functional activity, the surface levels of activating and inhibitory receptors along with the expansion rate and expression levels of pro-survival and pro-apoptotic genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA