Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol Evol ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731946

RESUMO

Resolving the absolute timescale of phylogenetic trees stipulates reliable estimates for the rate of DNA sequence evolution. For this end, various calibration methods have been developed and studied intensively. Intraspecific rate variation among distinct genetic lineages, however, has gained less attention. Here, we have assessed lineage-specific molecular rates of human mitochondrial DNA (mtDNA) by performing tip-calibrated Bayesian phylogenetic analyses. Tip-calibration, as opposed to traditional nodal time stamps from dated fossil evidence or geological events, is based on sample ages and becoming ever more feasible as ancient DNA data from radiocarbon-dated samples accumulate. We focus on subhaplogroups U2, U4, U5a, and U5b, the data including ancient mtDNA genomes from 14C-dated samples (n = 234), contemporary genomes (n = 301), and two outgroup sequences from haplogroup R. The obtained molecular rates depended on the data sets (with or without contemporary sequences), suggesting time-dependency. More notable was the rate variation between haplogroups: U4 and U5a stand out having a substantially higher rate than U5b. This is also reflected in the divergence times obtained (U5a: 17,700 years and U5b: 29,700 years), a disparity not reported previously. After ruling out various alternative causes (e.g., selection, sampling, and sequence quality), we propose that the substitution rates have been influenced by demographic histories, widely different among populations where U4/U5a or U5b are frequent. As with the Y-chromosomal subhaplogroup R1b, the mitochondrial U4 and U5a have been associated with remarkable range extensions of the Yamnaya culture in the Bronze Age.


Assuntos
DNA Antigo , DNA Mitocondrial , Teorema de Bayes , DNA Mitocondrial/genética , Evolução Molecular , Fósseis , Variação Genética , Haplótipos , Humanos , Filogenia
2.
Ann Hum Biol ; 46(2): 175-180, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30909755

RESUMO

Background: The phylogeny of major mitochondrial DNA haplogroups has played a key role in assessing the people of India through molecular genetics. Aim: To resolve the phylogeny and phylogeographic pattern of autochthonous haplogroup R with its descendant haplogroup U in the Urali Kuruman tribal population of Southern India. Subjects and methods: Complete mitogenome sequences of 40 individuals were amplified and sequenced using the Sanger sequencing method. Mutations were scored referring to the revised Cambridge reference sequence, and phylogenetic trees were constructed using previously described sequences. Results: Novel sub-lineages of haplogroup R30: R30a1c1, and U1: U1a1c1d2, U1a1c1d2a were identified. Urali Kurumans pooled ancestry with the native Iranians sharing the sub-haplogroups R30a1c and U1a1c1d. The coalescence ages estimated for the sub-haplogroup R30a1c dates ∼ 9.4 ± 3.5 Kya and for subclade U1a1c1d dates ∼ 9.1 ± 2.7 Kya. Conclusion: The study revealed a genetic link between Iran and South Asia in the Neolithic time, indicating bidirectional migration and admixture.


Assuntos
Migração Humana , Herança Materna/genética , Feminino , Humanos , Índia , Irã (Geográfico) , Filogeografia
3.
BMC Evol Biol ; 17(1): 115, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535779

RESUMO

BACKGROUND: The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS: Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS: Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.


Assuntos
DNA Mitocondrial/genética , Migração Humana , Sudeste Asiático , Australásia , DNA Ribossômico , Feminino , Genética Médica , Genética Populacional , Haplótipos , Heterozigoto , Humanos , Masculino , Filogenia , Filogeografia
4.
Ann Hum Biol ; 44(5): 408-418, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28140657

RESUMO

BACKGROUND: Available mitochondrial (mtDNA) data demonstrate genetic differentiation among South Slavs inhabiting the Balkan Peninsula. However, their resolution is insufficient to elucidate the female-specific aspects of the genetic history of South Slavs, including the genetic impact of various migrations which were rather common within the Balkans, a region having a turbulent demographic history. AIM: The aim was to thoroughly study complete mitogenomes of Serbians, a population linking westward and eastward South Slavs. SUBJECTS AND METHODS: Forty-six predominantly Serbian super-haplogroup U complete mitogenomes were analysed phylogenetically against ∼4000 available complete mtDNAs of modern and ancient Western Eurasians. RESULTS: Serbians share a number of U mtDNA lineages with Southern, Eastern-Central and North-Western Europeans. Putative Balkan-specific lineages (e.g. U1a1c2, U4c1b1, U5b3j, K1a4l and K1a13a1) and lineages shared among Serbians (South Slavs) and West and East Slavs were detected (e.g. U2e1b1, U2e2a1d, U4a2a, U4a2c, U4a2g1, U4d2b and U5b1a1). CONCLUSION: The exceptional diversity of maternal lineages found in Serbians may be associated with the genetic impact of both autochthonous pre-Slavic Balkan populations whose mtDNA gene pool was affected by migrations of various populations over time (e.g. Bronze Age pastoralists) and Slavic and Germanic newcomers in the early Middle Ages.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genoma Mitocondrial , Haplótipos/genética , Humanos , Sérvia
5.
Forensic Sci Int Genet ; 15: 27-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25457629

RESUMO

In recent years a large amount of mitochondrial population data for forensic purposes has been produced. Current efforts are focused at increasing the number of studied populations while generating updated genetic information of forensic quality. However, complete mitochondrial control region sequences are still scarce for most populations and even more so for complete mitochondrial genomes. In the case of Portugal, previous population genetics studies have already revealed the general portrait of HVS-I and HVS-II mitochondrial diversity, becoming now important to update and expand the mitochondrial region analysed. Accordingly, a total of 292 complete control region sequences from continental Portugal were obtained, under a stringent experimental design to ensure the quality of data through double sequencing of each target region. Furthermore, H-specific coding region SNPs were examined to detail haplogroup classification and complete mitogenomes were obtained for all sequences belonging to haplogroups U4 and U5. In general, a typical Western European haplogroup composition was found in mainland Portugal, associated to high level of mitochondrial genetic diversity. Within the country, no signs of substructure were detected. The typing of extra coding region SNPs has provided the refinement or confirmation of the previous classification obtained with EMMA tool in 96% of the cases. Finally, it was also possible to enlarge haplogroup U phylogeny with 28 new U4 and U5 mitogenomes.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Filogenia , Genética Forense , Haplótipos , Humanos , Portugal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA