Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 16(Suppl 2): S1287-S1290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882782

RESUMO

Aeromonas hydrophila is a Gram-negative bacterium that has been linked to serious illnesses in both humans and animals. The presence of hemolysin, a virulence factor, is critical in the development of A. hydrophila-related illnesses. As a result, precise and timely detection of the hemolysin gene is critical for efficient diagnosis and prevention of many illnesses. The PCR is used in this study to detect the hemolysin gene of A. hydrophila in a novel, fast, and highly sensitive one-step technique. Specific primers were constructed to amplify a conserved area within the hemolysin gene to achieve both specificity as well as sensitivity. The PCR assay was rigorously optimized, taking temperature, primer concentration, and reaction time into account, in order to maximize the efficiency and reliability of this method. In conclusion, this method's simplicity, sensitivity, and specificity make it highly promising for regular diagnostic applications. Its application would allow for the early detection of A. hydrophila infections, allowing for more effective treatment and control methods.

2.
Front Cell Infect Microbiol ; 14: 1348973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371296

RESUMO

Introduction: Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods: In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results: S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion: The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.


Assuntos
Aeromonas , Staphylococcus aureus Resistente à Meticilina , Smegmamorpha , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Aeromonas hydrophila/genética , Estudos Transversais , Antibacterianos/farmacologia , Peixes , Amoxicilina , Fatores de Risco , Água , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia
3.
J Food Prot ; 85(12): 1716-1725, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435978

RESUMO

ABSTRACT: Vibrio vulnificus inhabits estuarine waters around the world and can cause severe infections in people who eat contaminated raw or undercooked oysters. Although current detection methods are sensitive and specific, there are continuous demands for the development of rapid and accurate methods without a trained operator and equipment in the field conditions. Herein, we developed a simple and rapid method by detecting the hemolysin (vvh) gene of V. vulnificus by using recombinase polymerase amplification (RPA) combined with a lateral flow dipstick (LFD). The RPA-LFD could detect 100 fg of DNA (P < 0.05) and 20 CFU of V. vulnificus per reaction within 30 min (P < 0.01) and showed the result with incubation temperature ranges from 30 to 45°C (P < 0.001). The test was specific only to V. vulnificus and was not responsive to 10 other closely related Vibrio species and 18 foodborne pathogenic bacteria. Compared with PCR, quantitative PCR, and colony hybridization assays by using naturally contaminated oyster samples, our RPA-LFD showed the same detection ability as quantitative PCR assay. Therefore, the current RPA-LFD would be a valuable tool to detect V. vulnificus in oysters, especially in field conditions.


Assuntos
Ostreidae , Vibrio vulnificus , Humanos , Animais , Proteínas Hemolisinas/genética , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos , Ostreidae/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
4.
Microorganisms ; 9(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199972

RESUMO

Vibrio parahaemolyticus is one of the significant seafood-borne pathogens causing gastroenteritis in humans. Clustered regularly interspaced short palindromic repeats (CRISPR) are commonly detected in the genomes of V. parahaemolyticus and the polymorphism of CRISPR patterns has been applied as a genetic marker for tracking its evolution. In this work, a total of 15 pandemic and 36 non-pandemic V. parahaemolyticus isolates obtained from seafood between 2000 and 2012 were characterized based on hemolytic activity, antimicrobial susceptibility, and CRISPR elements. The results showed that 15/17 of the V. parahaemolyticus seafood isolates carrying the thermostable direct hemolysin gene (tdh+) were Kanagawa phenomenon (KP) positive. The Multiple Antibiotic Resistance (MAR) index ranged between 0.1 and 0.4, and 45% of the isolates have an MAR index ≥ 0.2. A total of 19 isolates were positive for CRISPR detection, including all tdh+ trh- isolates, two of tdh- trh+, and each of tdh+ trh+ and tdh- trh-. Four spacer types (Sp1 to Sp4) were identified, and CRISPR-positive isolates had at least one type of spacer homolog to the region of Vibrio alginolyticus megaplasmid. It is of interest that a specific CRISPR profile and spacer sequence type was observed with correlations to the hemolysin genotype (tdh/trh). Thus, these provide essential data on the exposure of foreign genetic elements and indicate shared ancestry within different genotypes of V. parahaemolyticus isolates.

5.
Open Access Maced J Med Sci ; 7(15): 2399-2403, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31666836

RESUMO

AIM: The main goal of this study was to analysis the "aspHS" gene and its phenotype in A. fumigatus. METHODS: Fifty-three A. fumigatus strains, including environmental, clinical and reference isolates, were used in this research. PCR was carried out based on Asp-hemolysin gene sequence. Two restriction enzymes TagI and NcoI were employed for digestion of PCR products. RESULTS: PCR products of 180 and 450 bp were generated for all A. fumigatus isolates. Digestion of the aspHS gene 180 bp amplicons with TagI and 450 bp amplicons with TagI and NcoI produced the expected bands for most isolates. Hemolysin production of A. fumigatus isolates was evaluated on sheep blood agar (SBA). CONCLUSION: In conclusion, our results provide evidence hemolysin activity and analysis of aspHS gene of A. fumigatus. These data may be useful in early diagnosis of A. fumigatus infections.

6.
Dis Aquat Organ ; 137(1): 41-46, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31777398

RESUMO

A disease outbreak in 42-d-old black tiger shrimp Penaeus monodon juveniles from a commercial aquaculture farm in Kerala, India, was investigated. The cause of the disease outbreak was confirmed as Vibrio parahaemolyticus by biochemical tests, PCR targeting the toxR gene and pathogenicity testing of the isolates. All of the isolates tested negative by PCR specific for V. parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND), implicating vibriosis unrelated to AHPND as the cause of mortality. Among the 19 isolates obtained, 2 possessed the tdh gene (coding for thermo-stable hemolysin), whereas none of the isolates possessed trh. The LD50 value of 8 isolates of V. parahaemolyticus from diseased and apparently healthy shrimp ranged from 2.7 × 104 to 4.9 × 105 CFU ml-1 by immersion challenge of P. monodon postlarvae. BOX-PCR and dendrogram analysis of the bacterial isolates revealed that the isolates from moribund and apparently healthy shrimp formed separate clusters, indicating that these isolates originate from separate clones. The isolates from moribund shrimp including tdh-positive V. parahaemolyticus clustered together. The present study represents the first report of tdh-positive V. parahaemolyticus causing disease in a shrimp farm.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Aquicultura , Índia
7.
J Bacteriol ; 200(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30150231

RESUMO

Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.


Assuntos
Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , RNA Longo não Codificante/genética , Staphylococcus aureus/genética , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Bacteriano/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA