Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887040

RESUMO

Artificial neural networks (ANNs) that are heavily inspired by the human brain now achieve human-level performance across multiple task domains. ANNs have thus drawn attention in neuroscience, raising the possibility of providing a framework for understanding the information encoded in the human brain. However, the correspondence between ANNs and the brain cannot be measured directly. They differ in outputs and substrates, neurons vastly outnumber their ANN analogs (i.e., nodes), and the key algorithm responsible for most of modern ANN training (i.e., backpropagation) is likely absent from the brain. Neuroscientists have thus taken a variety of approaches to examine the similarity between the brain and ANNs at multiple levels of their information hierarchy. This review provides an overview of the currently available approaches and their limitations for evaluating brain-ANN correspondence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA