Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(18): 22132-22141, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116123

RESUMO

Na4MnV(PO4)3 (NMVP) is a promising cathode material for sodium-ion batteries (SIBs) because of its extraordinary three-dimensional structure that provides plenty of channels for sodium-ion migration. However, the unsatisfied electrical conductivity of NMVP limits its utilization in SIBs. Herein, Zn-doped NMVP with a uniform carbonized polyacrylonitrile (PAN) coating layer, named NMZVP@cPAN, was synthesized via a sol-gel method, and carbonized PAN was uniformly distributed on the surface of NMVP. Therefore, the NMZVP@cPAN cathodes exhibited an outstanding discharge capacity of 70.6 mA·h·g-1 at 30 C and remarkable cycling stability with an admirable retention of 89.64% after 1000 cycles at 5 C. Rietveld refinement and ex situ X-ray diffraction analyses were performed to determine the change in the crystal structure. Density functional theory calculations were performed to determine the effects of Zn doping on the density of states and the migration energy barriers. Finally, the NMZVP@cPAN cathodes were successfully modified and could be used in SIBs as NMVP cathodes.

2.
ACS Appl Mater Interfaces ; 13(35): 41688-41697, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436858

RESUMO

Rechargeable aqueous zinc-ion batteries (ZIBs) are promising systems for energy storage due to their operational safety, low cost, and environmental friendliness. However, the development of suitable cathode materials is plagued by the sluggish dynamics of Zn2+ with strong electrostatic interaction. Herein, an Al3+-doped tremella-like layered Al0.15V2O5·1.01H2O (A-VOH) cathode material with a large pore diameter and high specific surface area is demonstrated to greatly boost electrochemical performance as ZIB cathodes. Resultant ZIBs with a 3 M Zn(CF3SO3)2 electrolyte deliver a high specific discharge capacity of 510.5 mAh g-1 (0.05 A g-1), and an excellent energy storage performance is well maintained with a specific capacity of 144 mAh g-1 (10 A g-1) even after ultralong 10,000 cycles. The decent electrochemical performance roots in the novel tremella-like structure and the interlayer of Al3+ ions and water molecules, which could improve the electrochemical reaction kinetics and structural long cycle stability. Furthermore, the assembled coin-type cells could power a light-emitting diode (LED) lamp for 2 days. We believed that the design philosophy of unique morphology with abundant active sites for Zn2+ storage will boost the development of competitive cathodes for high-performance aqueous batteries.

3.
Nanomicro Lett ; 13(1): 159, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34297240

RESUMO

Aluminum-ion batteries (AIBs) are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource. However, the inferior rate capacity and poor all-climate performance, especially the decayed capacity under low temperature, are still critical challenges toward high-specific-capacity AIBs. Herein, we report a binder-free and freestanding metal-organic framework-derived FeS2@C/carbon nanotube (FeS2@C/CNT) as a novel all-climate cathode in AIBs working under a wide temperature window between -25 and 50 °C with exceptional flexibility. The resultant cathode not only drastically suppresses the side reaction and volumetric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity (above 151 mAh g-1 at 2 A g-1) at room temperature. More importantly, to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs, the new hierarchical conductive composite FeS2@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g-1 capacity even under -25 °C. The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.

4.
J Colloid Interface Sci ; 585: 729-739, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33121760

RESUMO

Various Li-rich spinel Li1+xNi0.05Mn1.95-xO4 (0 ≤ x ≤ 0.10) cathode materials with a truncated octahedron were synthesized by a solution combustion method. The relationship of crystalline structure, particles morphology and electrochemical properties of the as-prepared samples was investigated via a series of physicochemical characterizations. The Li-Ni co-doping changes the lattice parameters and atomic configuration, whilst resulting in a contraction of unit cell dimension and giving rise to a variation of bond length. In this regard, the shrinkage of octahedral MnO6 provides a robust structure and the expansion of tetrahedral LiO4 facilitates a fast electrochemical process. Additionally, the resulted polyhedral Li1+xNi0.05Mn1.95-xO4 samples present the exposed (110), (100), and (111) crystal planes, which provide the favorable Li+ ions diffusion/transmission channel and alleviate Mn dissolution. Owing to these merits of polyhedral structure and Li-Ni co-doping, the optimized Li1.02Ni0.05Mn1.93O4 exhibits good electrochemical performance with high initial discharge capacity of 119.8, 107.1 and 97.9 mAh·g-1 at 1, 5 and 10 C, respectively. Even at a high current rate of 15 C, an excellent capacity retention of 91.7% is obtained after 1000 cycles, whilst the high temperature performance was also improved.

5.
ACS Nano ; 15(1): 797-808, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33332090

RESUMO

A phenomenon is observed in which the electrochemical performances of porous graphene electrodes show unexpectedly increasing capacities in the Li storage devices. However, despite many studies, the cause is still unclear. Here, we systematically present the reason for the capacity enhancements of the pristine graphene anode under functional group exclusion through morphological control and crystal structure transformation. The electrochemical synergy of both the edge effect and surface effect of the reduced dimensional scale graphene in an open-porous structure facilitates significantly enhanced capacity through multidimensional Li-ion accessibility and accumulation of Li atoms. Furthermore, the Stone-Wales defects boosted during Li insertion and extraction promote a capacity elevation beyond the theoretical capacity of the carbon electrode even after long-term cycles at high C-rates. As a result, the morphologically controlled graphene anode delivers the highest reversible capacity of 3074 mA h g-1 with a 163% capacity increase after 2000 cycles at 5 C. It also presents a gradually increasing capacity up to 1102 mA h g-1 even at 50 C without an evident capacity fading tendency. This study provides valuable information into the practical design of ultralight and high-rate energy storage devices.

6.
Small ; 10(15): 3032-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24711281

RESUMO

Three-dimensional (3D) hollow-porous vanadium pentoxide (V2 O5 ) quasi-microspheres are synthesized by a facile solvothermal method followed by annealing at 450 °C in air. The interconnected hollow-porous networks facilitate the kinetics of lithium-ion diffusion and improve the performance of V2 O5 to achieve a high capacity and remarkable rate capability as a cathode material for lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA