Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Enzymol ; 678: 411-440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641216

RESUMO

Constructing a comprehensive understanding of macromolecular behavior from a set of correlated small angle scattering (SAS) data is aided by tools that analyze all scattering curves together. SAS experiments on biological systems can be performed on specimens that are more easily prepared, modified, and formatted relative to those of most other techniques. An X-ray SAS measurement (SAXS) can be performed in less than a milli-second in-line with treatment steps such as purification or exposure to modifiers. These capabilities are valuable since biological macromolecules (proteins, polynucleotides, lipids, and carbohydrates) change conformation or assembly under specific conditions that often define their biological role. Furthermore, mutation or post-translational modification change their behavior and provides an avenue to tailor their mechanics. Here, we describe tools to combine multiple correlated SAS measurements for analysis and review their application to biological systems. The SAXS Similarity Map (SSM) compares a set of scattering curves and quantifies the similarity between them for display as a color on a grid. Visualizing an entire correlated data set with SSMs helps identify patterns that reveal biological functions. The SSM analysis is available as a web-based tool at https://sibyls.als.lbl.gov/saxs-similarity/. To make data available and promote tool development, we have also deployed a repository of correlated SAS data sets called Simple Scattering (available at https://simplescattering.com). The correlated data sets used to demonstrate the SSM are available on the Simple Scattering website. We expect increased utilization of correlated SAS measurements to characterize the tightly controlled mechanistic properties of biological systems and fine-tune engineered macromolecules for nanotechnology-based applications.


Assuntos
Proteínas , Difração de Raios X , Espalhamento a Baixo Ângulo , Conformação Molecular , Substâncias Macromoleculares
2.
J Synchrotron Radiat ; 29(Pt 5): 1318-1328, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073892

RESUMO

The second phase of the ESRF upgrade program did not only provide a new storage ring (Extremely Brilliant Source, EBS) but also allowed several beamlines to be refurbished. The BioSAXS beamline (located on port BM29) was upgraded with a new wiggler source and a larger detector. All analysis software has been rewritten to cope with the increased data flux and continues to provide beamline users with reduced and pre-processed data in real time. This article describes FreeSAS, an open-source collection of various small-angle scattering analysis algorithms needed to reduce and analyze BioSAXS data, and Dahu, the tool used to interface data analysis with beamline control. It further presents the data-processing pipelines for the different data acquisitions modes of the beamline, using either a sample changer for individual homogeneous samples or an inline size-exclusion chromatography setup.


Assuntos
Análise de Dados , Síncrotrons , Cromatografia em Gel , Espalhamento a Baixo Ângulo , Software
3.
IUCrJ ; 8(Pt 2): 225-237, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33708400

RESUMO

Mixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known a priori. To address this issue, the REGALS method (regularized alternating least squares) is introduced, which incorporates simple expectations about the data as prior knowledge, and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by REGALS are general properties such as smoothness of profiles and maximum dimensions of species, making it well suited for exploring datasets with unknown species. Here, REGALS is applied to the analysis of experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing and time-resolved temperature jump. Based on its performance with these challenging datasets, it is anticipated that REGALS will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and Python and is available freely as an open-source software package.

4.
J Synchrotron Radiat ; 28(Pt 1): 318-321, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399583

RESUMO

The design of a multipurpose sample cell holder for the high-throughput (HT) beamline B21 is presented. The device is compatible with the robot bioSAXS sample changer currently installed on BM29, ESRF, and P12 Petra IV synchrotrons. This work presents an approach that uses 3D-printing to make hardware alterations which can expand the versatility of HT beamlines at low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA