Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
1.
J Biophotonics ; : e202400368, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354878

RESUMO

One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.

2.
Bone ; 189: 117262, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303931

RESUMO

We previously demonstrated that transcutaneous CO2 application promotes muscle fiber-type switching, fracture healing, and osteogenesis by increasing blood flow and angiogenesis. Here, we aimed to investigate the preventive effects of transcutaneous CO2 application on disuse osteoporosis and muscle atrophy in a rat hindlimb suspension model. Eleven-week-old male Sprague-Dawley rats were divided into hindlimb suspension (HS), HS with transcutaneous CO2 application (HSCO2), and control groups. HSCO2 rats were administered transcutaneous 100 % CO2 gas in their bilateral hindlimbs, five times a week for 20 min. After 3 weeks, we harvested the gastrocnemius, femur, and tibia for assessment. Histological analysis revealed a significant decrease in the gastrocnemius myofiber cross-sectional area in HS rats compared to the control rats, whereas HSCO2 rats exhibited a significant increase compared to HS rats. Micro-computed tomography showed significant bone atrophy in the trabecular and cortical bones of the femur in HS rats compared to those of the control rats, whereas significant improvement was noted in HSCO2 rats. Histological analysis of the proximal tibia revealed more marrow adipose tissue in the HS rats than in the control rats. However, in the HSCO2 rats, fewer marrow adipose tissue and osteoclasts were observed. Moreover, HSCO2 rats had more osteoblasts and higher expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and vascular endothelial growth factor (VEGF) than the HS rats. The gastrocnemius and distal femur of HSCO2 rats also exhibited elevated PGC-1α and VEGF expression and upregulation of the myogenesis markers and osteogenesis markers compared to those of HS rats. This treatment effectively prevented disuse osteoporosis and muscle atrophy by promoting local angiogenesis and blood flow. PGC-1α is crucial for promoting this angiogenic pathway. Transcutaneous CO2 application may be a novel preventive procedure for disuse osteoporosis and muscle atrophy, complementing medication and rehabilitation.

3.
Genes (Basel) ; 15(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39202335

RESUMO

Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model. We hypothesized that exposure to prolonged simulated microgravity and subsequent recovery would lead to increased oxidative damage and altered expression of genes involved in the oxidative response. To test this hypothesis, we examined hearts of male (three and nine months of age) and female (3 months of age) Long-Evans rats that underwent HU for various durations up to 90 days and reambulated up to 90 days post-HU. Results indicate sex-dependent changes in oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) and antioxidant gene expression in left ventricular tissue. Three-month-old females displayed elevated 8-OHdG levels after 14 days of HU while age-matched males did not. In nine-month-old males, there were no differences in 8-OHdG levels between HU and normally loaded control males at any of the timepoints tested following HU. RNAseq analysis of left ventricular tissue from nine-month-old males after 14 days of HU revealed upregulation of pathways involved in pro-inflammatory signaling, immune cell activation and differential expression of genes associated with cardiovascular disease progression. Taken together, these findings provide a rationale for targeting antioxidant and immune pathways and that sex differences should be taken into account in the development of countermeasures to maintain cardiovascular health in space.


Assuntos
Doenças Cardiovasculares , Regulação da Expressão Gênica , Estresse Oxidativo , Ratos Long-Evans , Simulação de Ausência de Peso , Animais , Masculino , Feminino , Ratos , Doenças Cardiovasculares/genética , Elevação dos Membros Posteriores
4.
J Vet Med Sci ; 86(9): 946-950, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048345

RESUMO

Three Shiba goats aged 1 to 7 years kept in Ibaraki prefecture in Japan were presented with chief complaint of lumbar paralysis or gait abnormalities. As cerebrospinal setariasis were suspected in all cases at the first stage, ivermectin was administered to treat, but the response was insufficient. Necropsy revealed abscess formation on the ventral side of the spine at T5 in Case 1, T5-6 in Case 2, and C7-T1 in Case 3, causing compression of the spinal cord in all three cases. In addition to cerebrospinal setariasis, vertebral abscess should be considered as a cause of paresis or gait abnormalities in goats in Japan. Computed tomography was a useful for diagnosing vertebral abscess.


Assuntos
Abscesso , Doenças das Cabras , Cabras , Paresia , Animais , Doenças das Cabras/parasitologia , Japão , Paresia/veterinária , Paresia/etiologia , Abscesso/veterinária , Masculino , Feminino , Doenças da Coluna Vertebral/veterinária , Doenças da Coluna Vertebral/tratamento farmacológico , Doenças da Coluna Vertebral/complicações , Tomografia Computadorizada por Raios X/veterinária
5.
J Vet Med Sci ; 86(9): 969-973, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39069478

RESUMO

A 5-year-old Japanese Black cow presented with astasia. Bovine leukemia virus (BLV) was detected in the peripheral blood with lower proviral load (PVL). No enlargement of surface lymph nodes or lymphocytosis was observed. Necropsy revealed no enlarged lymph nodes in the thoracic, abdominal, or pelvic cavity. Spinal epidural and peri-medullary adipose tissue was increased in the spinal canal of lumbar to sacral vertebrae, Histopathological examination revealed tumor invasion of the epidural adipose tissue, and a diagnosis of B-cell lymphoma was made. The PVL in tumor tissue was higher, and monoclonal integration of BLV was confirmed. It was a rare case of bovine enzootic leukosis that formed a solitary mass around the spinal cord which might cause hindlimb paresis.


Assuntos
Paresia , Canal Medular , Animais , Bovinos , Feminino , Paresia/veterinária , Paresia/etiologia , Canal Medular/patologia , Leucose Enzoótica Bovina/patologia , Leucose Enzoótica Bovina/virologia , Leucose Enzoótica Bovina/diagnóstico , Linfoma de Células B/veterinária , Linfoma de Células B/patologia , Linfoma de Células B/complicações , Membro Posterior/patologia , Doenças dos Bovinos/patologia , Doenças dos Bovinos/virologia
6.
Immun Ageing ; 21(1): 50, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033285

RESUMO

Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.

7.
J Biomech ; 173: 112231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39053291

RESUMO

The Achilles tendon enthesis (ATE) anchors the Achilles tendon into the calcaneus through fibrocartilaginous tissue. The latter is enriched in type II collagen and proteoglycans (PGs), both of which give the enthesis its capacity to withstand compressive stress. Because unloading and reloading induce remodeling of the ATE fibrocartilage (Camy et al., 2022), chronic changes in the mechanical load could modify the mechanical response under compressive stress. Therefore, we investigated the ATE fatigue behavior in mice, under cyclic compressive loading, after 14 days of hindlimb suspension and 6 days of reloading. In addition, we performed a qualitative histological study of PGs in ATE fibrocartilage. The mechanical behavior of ATE was impaired in unloaded mice. A significant loss of 27 % in Δd (difference between the maximum and minimum displacements) was observed at the end of the test. In addition, the hysteresis area decreased by approximately 27 % and the stiffness increased by over 45 %. The increased stiffness and loss of viscosity were thrice and almost twice those of the control, respectively. In the reloaded entheses, where the loss of Δd was not significant, we found a significant 28 % decrease in the hysteresis area and a 26 % increase in stiffness, both of which were higher regarding the control condition. These load-dependent changes in the mechanical response seem partly related to changes in PGs in the uncalficied part of the ATE. These findings highlight the importance of managing compressive loading on ATE when performing prophylactic and rehabilitation exercises.


Assuntos
Tendão do Calcâneo , Elevação dos Membros Posteriores , Tendão do Calcâneo/fisiologia , Animais , Camundongos , Elevação dos Membros Posteriores/fisiologia , Suporte de Carga/fisiologia , Estresse Mecânico , Fenômenos Biomecânicos , Masculino , Força Compressiva/fisiologia , Proteoglicanas/metabolismo , Camundongos Endogâmicos C57BL , Fibrocartilagem/fisiologia , Fibrocartilagem/fisiopatologia
8.
Sci Rep ; 14(1): 15678, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977785

RESUMO

Aging and lack of exercise are the most important etiological factors for muscle loss. We hypothesized that new factors that contribute to muscle loss could be identified from ones commonly altered in expression in aged and exercise-limited skeletal muscles. Mouse gastrocnemius muscles were subjected to mass spectrometry-based proteomic analysis. The muscle proteomes of hindlimb-unloaded and aged mice were compared to those of exercised and young mice, respectively. C1qbp expression was significantly upregulated in the muscles of both hindlimb-unloaded and aged mice. In vitro myogenic differentiation was not affected by altering intracellular C1qbp expression but was significantly suppressed upon recombinant C1qbp treatment. Additionally, recombinant C1qbp repressed the protein level but not the mRNA level of NFATc1. NFATc1 recruited the transcriptional coactivator p300, leading to the upregulation of acetylated histone H3 levels. Furthermore, NFATc1 silencing inhibited p300 recruitment, downregulated acetylated histone H3 levels, and consequently suppressed myogenic differentiation. The expression of C1qbp was inversely correlated with that of NFATc1 in the gastrocnemius muscles of exercised or hindlimb-unloaded, and young or aged mice. These findings demonstrate a novel role of extracellular C1qbp in suppressing myogenesis by inhibiting the NFATc1/p300 complex. Thus, C1qbp can serve as a novel therapeutic target for muscle loss.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , Fatores de Transcrição NFATC , Animais , Masculino , Camundongos , Acetilação , Diferenciação Celular , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética
9.
Sci Rep ; 14(1): 15536, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969710

RESUMO

Mallards inhabit soft grounds such as mudflats, marshes, and beaches, demonstrating remarkable proficiency in traversing these grounds. This adeptness is closely linked to the adjustments in the operation of their hindlimbs. This study employs high-speed videography to observe postural adjustments during locomotion across mudflats. Analysis of spatiotemporal parameters of the hindlimbs reveals transient and continuous changes in joints (tarsometatarso-phalangeal joint (TMTPJ), intertarsal joint (ITJ), knee, and hip) during movement on different ground hardness and slope (horizontal and uphill). The results indicate that as the stride length of the mallard increases, its speed also increases. Additionally, the stance phase duration decreases, leading to a decrease in the duty factor. Reduced ground hardness and increased slope lead to delayed adjustment of the TMTPJ, ITJ, and knee. Mallards adjust their stride length by augmenting ITJ flexion on steeper slopes, while reduced hardness prompts a decrease in TMTPJ flexion at touch-down. Additionally, the hip undergoes two brief extensions during the stance phase, indicating its crucial role in posture adjustment and propulsion on uphill grounds. Overall, the hindlimb joints of the mallard function as a whole musculoskeletal system, with each joint employing a distinct strategy for adjusting to adapt to various ground conditions.


Assuntos
Membro Posterior , Locomoção , Membro Posterior/fisiologia , Animais , Locomoção/fisiologia , Fenômenos Biomecânicos , Articulações/fisiologia , Lagartos/fisiologia , Marcha/fisiologia
10.
Biol Pharm Bull ; 47(6): 1179-1188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880626

RESUMO

Secondary lymphedema occurs after cancer surgery involving lymph node dissection owing to the lymphatic system dysfunction. However, the pathophysiology of lymphedema and the molecular pathways involved remain unknown. This study aimed to develop a rat hindlimb lymphedema model and investigate the mechanisms that drive pathophysiology and the effects of the traditional Japanese medicine goreisan on lymphedema. The rat lymphedema model was induced by combination surgeries of popliteal lymph node dissection, skin cautery incision, and fascial ablation coagulation in the right hindlimb using male Wistar rats. The foot volume was significantly increased, and recovery was delayed by combination surgeries. Dermal thickness and dilated lymphatic vessels of the hindlimb were observed on postoperative day 2. The number of infiltrating leukocytes (CD45+ cells), including CD4+ T-cells, increased in the lymphedema group compared with that in the sham group. The relative mRNA expression and protein levels of interleukin-6 (IL-6), CC chemokine ligand 2 (CCL2), transforming growth factor ß1 (TGF-ß1), and Fms-related receptor tyrosine kinase 4 (FLT4) were significantly higher in the lymphedema group than in the sham group. Foot volume was decreased by goreisan, furosemide, and prednisolone treatments. Goreisan diminished the increase in CD4+ T-cells, and the same trend was observed for CCL2 and FLT4 expression. In conclusion, the rat hindlimb lymphedema model in this study exhibited increased foot volume, skin-infiltrating cells, and pathological changes accompanied by inflammatory and fibrotic responses, suggesting that the model presented significant clinical features of lymphedema. Goreisan may exert a therapeutic effect on lymphedema by inhibiting CD4+ T-cell infiltration.


Assuntos
Membro Posterior , Linfedema , Animais , Masculino , Ratos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Linfedema/tratamento farmacológico , Medicina Tradicional do Leste Asiático , Ratos Wistar
11.
Life (Basel) ; 14(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38792565

RESUMO

Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development in rats subjected to focal TBI was investigated to explore the potential roles of collagen IV and laminin within the extracellular matrix (ECM) of selected hindlimb muscles in the emergence of motor deficits following TBI. A focal TBI was induced by ablating the left sensorimotor cortex in rats and motor deficits were assessed by measuring HL-PA. The expression of laminin and collagen IV in eight selected muscles on each side of the hindlimbs from both TBI- and sham-operated rats were studied using immunohistochemistry and semi-quantitatively analyzed. The results indicated that the TBI rats exhibited HL-PA, characterized by flexion of the contralateral (right) hindlimb. In the sham-operated rats, the immunoreactive components of laminin and collagen IV were evenly and smoothly distributed along the border of the muscle fibers in all the investigated muscles. In contrast, in the TBI rats, the pattern was broken into aggregated, granule-like, immunoreactive components. Such a labeling pattern was detected in all the investigated muscles both from the contra- and ipsilateral sides of the TBI rats. However, in TBI rats, most of the muscles from the contralateral hindlimb showed a significantly increased expression of these two proteins in comparison with those from the ipsilateral hindlimb. In comparison to sham-operated rats, there was a significant increase in laminin and collagen IV expression in various contralateral hindlimb muscles in the TBI rats. These findings suggest potential implications of laminin and collagen IV in the development of motor deficits following a focal TBI.

12.
J Biomed Res ; : 1-13, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38807379

RESUMO

Macrophages mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Thus, it's necessary to exploit macrophages based therapeutic targets for ischemic disease. Here, we found mRNA level of SR-A1 was elevated in patients with critical limb ischemia by analysis of gene expression omnibus (GEO) database. Then we investigated the role and the underlined mechanisms of macrophage SR-A1 in a mouse HLI model. Compared with the SR-A1 fl/fl mice, the Lyz Cre/+/SR-A1 flox/flox (SR-A1 ΔMΦ) mice showed significantly lower laser doppler blood flow in the ischemic limb at day 7 after HLI. Consistently, histological analysis exhibited that ischemic limb of SR-A1 ΔMΦ mice displayed more sever and sustained necrotic morphology, inflammation and fibrosis, decreased vessel density and regeneration rate, compared with which of control SR-A1 fl/fl mice. Furthermore, restoration of wild-type myeloid cells to SR-A1 knock-out mice effectively relieved the doppler perfusion in the ischemic limb and restrained skeletal muscle damage 7 days post HLI. In line with in vivo findings, when co-cultivating macrophages with the mouse myoblast line C2C12, SR-A1 -/- bone marrow macrophage significantly inhibited myoblast differentiation in vitro. Mechanically, SR-A1 enhanced skeletal muscle regeneration response to HLI by inhibiting the oncostatin M (OSM) production via suppressed NF-κB signaling activation. These results indicates that SR-A1 is a promising candidate molecule to improve tissue repair and regeneration in peripheral ischemic arterial disease.

13.
Life Sci Space Res (Amst) ; 41: 80-85, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670656

RESUMO

The disuse of skeletal limb muscles occurs in a variety of conditions, yet our comprehension of the molecular mechanisms involved in adaptation to disuse remains incomplete. We studied the mechanical characteristics of actin-myosin interaction using an in vitro motility assay and isoform composition of myosin heavy and light chains by dint of SDS-PAGE in soleus muscle of both control and hindlimb-unloaded rats. 14 days of hindlimb unloading led to the increased maximum sliding velocity of actin, reconstituted, and native thin filaments over rat soleus muscle myosin by 24 %, 19 %, and 20 %, respectively. The calcium sensitivity of the "pCa-velocity" relationship decreased. There was a 26 % increase in fast myosin heavy chain IIa (MHC IIa), a 22 % increase in fast myosin light chain 2 (MLC 2f), and a 13 % increase in fast MLC 1f content. The content of MLC 1s/v, typical for slow skeletal muscles and cardiac ventricles did not change. At the same time, MLC 1s, typical only for slow skeletal muscles, disappeared. The maximum velocity of soleus muscle native thin filaments was 24 % higher compared to control ones sliding over the same rabbit myosin. Therefore, both myosin and native thin filament kinetics could influence the mechanical characteristics of the soleus muscle. Additionally, the MLC 1s and MLC 1s/v ratio may contribute to the mechanical characteristics of slow skeletal muscle, along with MHC, MLC 2, and MLC 1 slow/fast isoforms ratio.


Assuntos
Elevação dos Membros Posteriores , Músculo Esquelético , Ratos Wistar , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Coelhos , Miosinas/metabolismo , Cálcio/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas
14.
Front Cell Dev Biol ; 12: 1302141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559809

RESUMO

During the early development of tetrapods, including humans, the embryonic body elongates caudally once the anterior-posterior axis is established. During this process, region-specific vertebral morphogenesis occurs, with the determination of limb positioning along the anterior-posterior axis. We previously reported that Gdf11 functions as an anatomical integration system that determines the positioning of hindlimbs and sacral vertebrae where Gdf11 is expressed. However, the molecular mechanisms underlying induction of Gdf11 expression remain unclear. In this study, we searched for non-coding regions near the Gdf11 locus that were conserved across species to elucidate the regulatory mechanisms of Gdf11 expression. We identified an enhancer of the Gdf11 gene in intron 1 and named it highly conserved region (HCR). In HCR knockout mice, the expression level of endogenous Gdf11 was decreased, and the position of the sacral-hindlimb unit was shifted posteriorly. We also searched for factors upstream of Gdf11 based on the predicted transcription factor binding sites within the HCR. We found that inhibition of FGF signaling increased endogenous Gdf11 expression, suggesting that FGF signaling negatively regulates Gdf11 expression. However, FGF signaling does not regulate HCR activity. Our results suggest that there are species-specific Gdf11 enhancers other than HCR and that FGF signaling regulates Gdf11 expression independent of HCR.

15.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585832

RESUMO

Background: The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods: We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results: The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion: These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.

16.
Gene ; 918: 148457, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641071

RESUMO

Disuse osteoporosis is one of the major problems of bone health which commonly occurs in astronauts during long-term spaceflight and bedridden patients. However, the mechanisms underlying such mechanical unloading induced bone loss have not been fully understood. In this study, we employed hindlimb-unloading mice models with different length of tail suspension to investigate if the bone loss was regulated by distinct factors under different duration of disuse. Our micro-CT results showed more significant decrease of bone mass in 6W (6-week) tail-suspension mice compared to the 1W (1-week) tail-suspension ones, as indicated by greater reduction of BV/TV, Tb.N, B.Ar/T.Ar and Ct.Th. RNA-sequencing results showed significant effects of hindlimb disuse on cell locomotion and immune system process which could cause bone loss.Real-time quantitative PCR results indicated a greater number of bone formation related genes that were downregulated in short-term tail-suspension mice compared to the long-term ones. It is, thus, suggested while sustained hindlimb unloading continuously contributes to bone loss, molecular regulation of bone homeostasis tends to reach a balance during this process.


Assuntos
Elevação dos Membros Posteriores , Homeostase , Animais , Camundongos , Osteogênese/genética , Masculino , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X , Osteoporose/genética , Osso e Ossos/metabolismo , Densidade Óssea , Membro Posterior
17.
Front Neurol ; 15: 1348038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633538

RESUMO

Background: Several studies have confirmed the direct relationship between extracellular acidification and the occurrence of pain. As an effective pain management approach, the mechanism of electroacupuncture (EA) treatment of acidification-induced pain is not fully understood. The purpose of this study was to assess the analgesic effect of EA in this type of pain and to explore the underlying mechanism(s). Methods: We used plantar injection of the acidified phosphate-buffered saline (PBS; pH 6.0) to trigger thermal hyperalgesia in male Sprague-Dawley (SD) rats aged 6-8 weeks. The value of thermal withdrawal latency (TWL) was quantified after applying EA stimulation to the ST36 acupoint and/or chemogenetic control of astrocytes in the hindlimb somatosensory cortex. Results: Both EA and chemogenetic astrocyte activation suppressed the acid-induced thermal hyperalgesia in the rat paw, whereas inhibition of astrocyte activation did not influence the hyperalgesia. At the same time, EA-induced analgesia was blocked by chemogenetic inhibition of astrocytes. Conclusion: The present results suggest that EA-activated astrocytes in the hindlimb somatosensory cortex exert an analgesic effect on acid-induced pain, although these astrocytes might only moderately regulate acid-induced pain in the absence of EA. Our results imply a novel mode of action of astrocytes involved in EA analgesia.

18.
Anat Rec (Hoboken) ; 307(10): 3344-3354, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38544399

RESUMO

Accipitriformes are diverse in their prey preferences and use their grasping feet for hunting. Little is known about the architectural design of muscles related to grasping among species of different sizes, diets, and foraging behaviors. In the present study, we report quantitative data and analysis of the pelvic musculature of the Japanese sparrowhawk (Accipiter gularis), Eurasian sparrowhawk (Accipiter nisus), common buzzard (Buteo buteo), northern goshawk (Accipiter gentilis), and cinereous vulture (Aegypius monachus). As expected, mass and architecture of the considered muscles were very different between the cinereous vulture and the four other species. The cinereous vulture allocates more mass and physiological cross-sectional area (PCSA) to the proximally inserted flexor muscles, which indicates the rudimentary grasping ability of the foot and is a myological reflection of its carrion preference. Furthermore, in the cinereous vulture, muscles were built with the lowest architectural index (AI) compared with the other species, and the intrinsic foot muscles were short-fibered, which is disadvantageous for rapid manipulation and foot dexterity. The other four species, as a whole, featured large flexor hallucis longus (FHL) muscles and better development of distally inserted flexors, reflecting their predatory lifestyle. Some differences were also found between the species that consumed birds and those that consumed mammals. The two avivorous species were superior in AI and fiber length of the intrinsic foot muscles which are suitable for good hunting speed and digit flexibility, the prerequisition for hunting agile prey.


Assuntos
Músculo Esquelético , Animais , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Força da Mão/fisiologia , Falconiformes/fisiologia , Falconiformes/anatomia & histologia , Especificidade da Espécie
19.
Proteomics ; 24(9): e2300214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475964

RESUMO

Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.


Assuntos
Proteínas Sanguíneas , Proteômica , Voo Espacial , Ausência de Peso , Animais , Camundongos , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Espectrometria de Massas/métodos , Elevação dos Membros Posteriores , Proteoma/metabolismo , Proteoma/análise , Masculino , Camundongos Endogâmicos C57BL
20.
Inflammopharmacology ; 32(2): 1633-1646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451396

RESUMO

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Animais , Ratos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA