Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.585
Filtrar
1.
Brain Behav ; 14(8): e3645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135280

RESUMO

BACKGROUND: The volumes of the hippocampal subfields are related to poststroke cognitive dysfunctions. However, it remains unclear whether contralesional hippocampal subfield volume contributes to cognitive impairment. This study aimed to investigate the volumetric differences in the contralesional hippocampal subfields between patients with left and right hemisphere strokes (LHS/RHS). Additionally, correlations between contralesional hippocampal subfield volumes and clinical outcomes were explored. METHODS: Fourteen LHS (13 males, 52.57 ± 7.10 years), 13 RHS (11 males, 51.23 ± 15.23 years), and 18 healthy controls (11 males, 46.94 ± 12.74 years) were enrolled. Contralesional global and regional hippocampal volumes were obtained with T1-weighted images. Correlations between contralesional hippocampal subfield volumes and clinical outcomes, including the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE), were analyzed. Bonferroni correction was applied for multiple comparisons. RESULTS: Significant reductions were found in contralesional hippocampal as a whole (adjusted p = .011) and its subfield volumes, including the hippocampal tail (adjusted p = .005), cornu ammonis 1 (CA1) (adjusted p = .002), molecular layer (ML) (adjusted p = .004), granule cell and ML of the dentate gyrus (GC-ML-DG) (adjusted p = .015), CA3 (adjusted p = .009), and CA4 (adjusted p = .014) in the RHS group compared to the LHS group. MoCA and MMSE had positive correlations with volumes of contralesional hippocampal tail (p = .015, r = .771; p = .017, r = .763) and fimbria (p = .020, r = .750; p = .019, r = .753) in the LHS group, and CA3 (p = .007, r = .857; p = .009, r = .838) in the RHS group, respectively. CONCLUSION: Unilateral stroke caused volumetric differences in different hippocampal subfields contralesionally, which correlated to cognitive impairment. RHS leads to greater volumetric reduction in the whole contralesional hippocampus and specific subfields (hippocampal tail, CA1, ML, GC-ML-DG, CA3, and CA4) compared to LHS. These changes are correlated with cognitive impairments, potentially due to disrupted neural pathways and interhemispheric communication.


Assuntos
Disfunção Cognitiva , Hipocampo , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Adulto , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Lateralidade Funcional/fisiologia , Cognição/fisiologia , Idoso , Testes de Estado Mental e Demência
3.
Alzheimers Dement ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166771

RESUMO

Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.

4.
Clin Neurol Neurosurg ; 245: 108473, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39154538

RESUMO

Temporal lobe epilepsy (TLE) is a prevalent form of epilepsy originating in the temporal lobes. A common pathological feature is hippocampal sclerosis (HS), characterized by the loss of neuronal cells, which is associated with the typical temporal mesial lobe epilepsy (MTLE). In this study, we aimed to analyze gray matter alterations in patients with MTLE with right and left hemisphere HS using voxel-based morphometry and compare them with control groups. A meta-analysis was performed based on the guidelines contained in the Protocol Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), using the MEDLINE database, with the keywords: "gray matter" AND "temporal lobe epilepsy " AND ("hippocampal sclerosis" OR "hippocampal abnormalities") AND ("voxel-based morphometry" OR "VBM" OR "voxel-wise"). Of the 14 articles included in the review, 8 were added by the method, in which the meta-analysis was performed. Our results indicate that in the right hemisphere, the hippocampus, caudate nucleus, parahippocampal gyrus, thalamus, dorsalis medial nucleus, insula, and right claustrum were most commonly implicated. In the left hemisphere, a significant pattern of gray matter loss was observed in the putamen, lentiform nucleus, uncus, Brodmann areas 20 and 23, cingulate gyrus, caudate nucleus, cerebellum, and cuneus compared to healthy controls.Our study highlights distinct patterns of gray matter alteration in MLTE-HS and suggests that these regions may contribute to changes in verbal memory and visuospatial impairment based on their anatomical and hemispheric locations. Our findings can be potentially helpful for future diagnostic markers, therapeutic targets, and insights into disease progression, better understanding of these findings.

5.
Front Oncol ; 14: 1382220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139283

RESUMO

Small cell lung cancer (SCLC) is the most malignant pathological type of lung cancer with the highest mortality, and the incidence of brain metastasis (BM) is in high frequency. So far, prophylactic cranial irradiation (PCI) has been suggested as an effective treatment for preventing brain metastasis of SCLC. PCI has long been applied to limited-stage SCLC (LS-SCLC) patients who have achieved complete remission after radiotherapy and chemotherapy as a standard treatment. However, the neurocognitive decline is a major concern surrounding PCI. New therapeutic approaches targeting PCI-induced neurotoxicity, including hippocampal protection or memantine, have been increasingly incorporated into the therapeutic interventions of PCI. Helical tomotherapy, RapidArc, and Volumetric-modulated arc therapy (VMAT) with a head-tilting baseplate are recommended for hippocampal protection. Besides, in the MRI and immunotherapy era, the significance of PCI in SCLC patients is controversial. SCLC patients with PCI should be recruited in clinical trials since this is the only way to improve the existing standard of care. This review summarizes the current therapeutic strategy and dilemma over PCI for SCLC, providing a theoretical basis for clinical decision-making and suggestions for PCI practice in clinical.

6.
Hippocampus ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105449

RESUMO

The hippocampus is considered essential for several forms of declarative memory, including spatial and social memory. Despite the extensive research of the classic subfields of the hippocampus, the fasciola cinerea (FC)-a medially located structure within the hippocampal formation-has remained largely unexplored. In the present study, we performed a morpho-functional characterization of principal neurons in the mouse FC. Using in vivo juxtacellular recording of single neurons, we found that FC neurons are distinct from neighboring CA1 pyramidal cells, both morphologically and electrophysiologically. Specifically, FC neurons displayed non-pyramidal morphology and granule cell-like apical dendrites. Compared to neighboring CA1 pyramidal neurons, FC neurons exhibited more regular in vivo firing patterns and a lower tendency to fire spikes at short interspike intervals. Furthermore, tracing experiments revealed that the FC receives inputs from the lateral but not the medial entorhinal cortex and CA3, and it provides a major intra-hippocampal projection to the septal CA2 and sparser inputs to the distal CA1. Overall, our results indicate that the FC is a morphologically and electrophysiologically distinct subfield of the hippocampal formation; given the established role of CA2 in social memory and seizure initiation, the unique efferent intra-hippocampal connectivity of the FC points to possible roles in social cognition and temporal lobe epilepsy.

7.
J Neurol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105896

RESUMO

Two-thirds of published patients with anti-leucine rich, glioma inactivated 1 (LGI1) encephalitis develop hippocampal sclerosis (HS). It is likely that this contributes to residual cognitive long-term deficits and the risk of epilepsy. Almost all patients harbor anti-LGI1-immunoglobulin G-(IgG-) subclass 4, which is considered a "benign", non-destructive subclass. In contrast, neuropathological case studies have suggested that the classical complement cascade may contribute to mediotemporal cell death in patients with LGI1 antibodies. IgG subclasses 1, 2, or 3 are required to initiate this cascade. We hypothesized that patients with these anti-LGI1-IgG1/2/3 in addition to IgG4 have a higher risk of developing HS than patients with anti-LGI1-IgG4 alone. We retrospectively assessed all anti-LGI1 encephalitis patients from this center with anti-LGI1-IgG-subclass information and follow-up MRI available. Nine out of 20 patients had developed HS (45%). Volumetric FreeSurfer analysis confirmed the visual HS diagnoses. HS and a lower hippocampal volume were associated with anti-LGI1-IgG1/2/3. All six patients with this IgG subclass status developed HS. There was no association with older or younger age at onset, female sex, longer latency from disease onset to start of immunotherapy, less intense immunotherapy, higher serum titers of LGI1 antibodies, LGI1 antibodies in CSF or higher LGI1-specific antibody indices. There was no association between anti-LGI1-IgG1/2/3 status and neuropsychological performance, epilepsy, or general neurological performance. This confirms our hypothesis that anti-LGI1-IgG1/2/3 in serum puts patients at risk of developing HS. If these findings can be confirmed and clinically corroborated, patients with anti-LGI1-IgG1/2/3 might become candidates for anti-complement-directed immunological treatments.

8.
J Neurochem ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091022

RESUMO

Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.

9.
J Neuroimaging ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092876

RESUMO

Epilepsy, affecting 0.5%-1% of the global population, presents a significant challenge with 30% of patients resistant to medical treatment. Temporal lobe epilepsy, a common cause of medically refractory epilepsy, is often caused by hippocampal sclerosis (HS). HS can be divided further by subtype, as defined by the International League Against Epilepsy (ILAE). Type 1 HS, the most prevalent form (60%-80% of all cases), is characterized by cell loss and gliosis predominantly in the subfields cornu ammonis (CA1) and CA4. Type 2 HS features cell loss and gliosis primarily in the CA1 sector, and type 3 HS features cell loss and gliosis predominantly in the CA4 subfield. This literature review evaluates studies on hippocampal subfields, exploring whether observable atrophy patterns from in vivo and ex vivo magnetic resonance imaging (MRI) scans correlate with histopathological examinations with manual or automated segmentation techniques. Our findings suggest only ex vivo 1.5 Tesla (T) or 3T MRI with manual segmentation or in vivo 7T MRI with manual or automated segmentations can consistently correlate subfield patterns with histopathologically derived ILAE-HS subtypes. In conclusion, manual and automated segmentation methods offer advantages and limitations in diagnosing ILAE-HS subtypes, with ongoing research crucial for refining hippocampal subfield segmentation techniques and enhancing clinical applicability.

10.
J Med Cases ; 15(8): 159-166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091574

RESUMO

Transient global amnesia (TGA) is a benign and transient condition with a sudden short-term amnesia. One of the conditions resembling TGA is hippocampal infarction, which requires relapse prevention treatments. In this report, we present a case with bilateral hippocampal infarction in whom distinguishing these two conditions was difficult for up to 1 week from the onset. A 60-year-old female visited our hospital with sudden onset retrograde and anterograde amnesia. Thin-slice magnetic resonance imaging (MRI) with 2-mm thickness revealed hyperintense signals on diffusion-weighted imaging (DWI) with signal loss on apparent diffusion coefficient (ADC) on both sides of the hippocampus. MRI with 5-mm thickness on day 7 revealed persistent restricted diffusion on both sides, one of which was still with decreased ADC values. Based on this finding, the diagnosis of bilateral hippocampal infarction was reached, and the relapse-preventive antiplatelet was continued. This case implied the potential difficulty of distinguishing cases with TGA and those with hippocampal infarction based on MRI findings within the first several days after onset. Thin-slice brain MRI, careful search of potential cardiovascular risks, and follow-up MRI ≥ 7 days after onset will be helpful to reach a correct diagnosis in cases with sudden amnesia.

11.
Cogn Neurodyn ; 18(4): 2077-2093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104672

RESUMO

Young immature granule cells (imGCs) appear via adult neurogenesis in the hippocampal dentate gyrus (DG). In comparison to mature GCs (mGCs) (born during development), the imGCs exhibit two competing distinct properties such as high excitability (increasing activation degree) and low excitatory innervation (reducing activation degree). We develop a spiking neural network for the DG, incorporating both the mGCs and the imGCs. The mGCs are well known to perform "pattern separation" (i.e., a process of transforming similar input patterns into less similar output patterns) to facilitate pattern storage in the hippocampal CA3. In this paper, we investigate the effect of the young imGCs on pattern separation of the mGCs. The pattern separation efficacy (PSE) of the mGCs is found to vary through competition between high excitability and low excitatory innervation of the imGCs. Their PSE becomes enhanced (worsened) when the effect of high excitability is higher (lower) than the effect of low excitatory innervation. In contrast to the mGCs, the imGCs are found to perform "pattern integration" (i.e., making association between dissimilar patterns). Finally, we speculate that memory resolution in the hippocampal CA3 might be optimally maximized via mixed cooperative encoding through pattern separation and pattern integration.

12.
Biochem Biophys Res Commun ; 736: 150492, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39116679

RESUMO

BACKGROUND: The risk of developing dementia is higher in individuals who suffer from perioperative neurocognitive disorder (PND), including postoperative cognitive dysfunction (POCD) and delirium. Recent studies have indicated correlations between anesthesia, surgery and PND. Acute metabolic changes induced by anesthesia and surgery may be related to cognitive impairments. Despite a paucity of research on acute metabolic changes in the hippocampus during surgery, there are conflicting about specific metabolites. METHODS: We developed a mouse model of cognitive impairment induced by isoflurane anesthesia and unilateral nephrectomy. Cognition was evaluated by Y maze and fear conditioning test (FCT). The hippocampus was harvested after the surgery. LC-MS (liquid chromatography-mass spectrometry) was performed. The differential metabolites involved in lipid, amino acid, nucleotide, carbohydrate metabolism were analyzed. RESULTS: Anesthesia and surgery exposure induced cognition decline. A total of 49 metabolites were significantly up-regulated and 122 down-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the metabolites identified purine, glutathione, nicotinate and nicotinamide metabolism. Metabolites involved in lipid, amino acid, nucleotide, carbohydrate metabolism were identified including nicotinamide adenine dinucleotide (NAD), 1-Methylnicotinamide, propionic acid, histidine, adenosine, and guanosine cyclic monophosphate. Some metabolites exhibited a consistent change trend in the hippocampus of aging mice. CONCLUSIONS: The study indicates that anesthesia and surgery can induce acute alterations in hippocampal metabolomics, including metabolites involved in lipid, amino acid, nucleotide, and carbohydrate metabolism. These metabolites may play a role in modulating PND through the regulation of neuroinflammation, oxidative stress, blood-brain barrier (BBB) permeability.

13.
Psychoneuroendocrinology ; 169: 107149, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39128397

RESUMO

Stress is associated with increased vulnerability to psychosis, yet the mechanisms that contribute to these effects are poorly understood. Substantial literature has linked reduced hippocampal volume to both psychosis risk and early life stress. However, less work has explored the direct and indirect effects of stress on psychosis through the hippocampus in preclinical samples- when vulnerability for psychosis is accumulating. The current paper leverages the Adolescent Brain Cognitive Development (ABCD) Study sample to examine whether objective psychosocial stressors, specifically adverse childhood experiences (ACE), are linked to vulnerability for psychosis, measured by psychotic-like experiences (PLE) severity, in late childhood and early adolescence, both directly and indirectly through the deleterious effects of stress on the hippocampus. Baseline data from 11,728 individuals included previously examined and validated items to assess ACE exposure, hippocampal volume, and PLE severity - a developmentally appropriate metric of risk for psychosis. Objective psychosocial stress exposure in childhood was associated with elevated PLE severity during the transition from childhood to adolescence. Hippocampal volume was significantly reduced in individuals with greater PLE severity and greater childhood stress exposure compared to peers with low symptoms or low stress exposure. These findings are consistent with a hippocampal vulnerability model of psychosis risk. Stress exposure may cumulatively impact hippocampal volume and may also reflect a direct pathway of psychosis risk. Objective psychosocial stress should be considered as a treatment target that may impact neurodevelopment and psychosis risk.

14.
Ecotoxicol Environ Saf ; 283: 116833, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128446

RESUMO

Arsenic, a neurotoxic metalloid, poses significant health risks. However, ellagic acid, renowned for its antioxidant properties, has shown potential in neuroprotection. This study aimed to investigate the neuroprotective effects of ellagic acid against arsenic-induced neuronal ferroptosis and cognitive impairment and elucidate the underlying mechanisms. Using an arsenic-exposed Wistar rat model and an arsenic-induced HT22 cells model, we assessed cognitive ability, measured serum and brain arsenic levels, and evaluated pathological damage through histological analysis and transmission electron microscopy. Additionally, we examined oxidative stress and iron ion levels using GSH, MDA, ROS and tissue iron biochemical kits, and analyzed the expression of ferroptosis-related markers using western blot and qRT-PCR. Our results revealed that arsenic exposure increased both serum and brain arsenic levels, resulting in hippocampal pathological damage and subsequent decline in learning and memory abilities. Arsenic-induced neuronal ferroptosis was mediated by the inhibition of the xCT/GSH/GPX4/Nrf2 signaling axis and disruption of iron metabolism. Notably, ellagic acid intervention effectively reduced serum and brain arsenic levels, ameliorated neuronal damage, and improved oxidative stress, ferroptosis, and cognitive impairment. These beneficial effects were associated with the activation of the Nrf2/Keap1 signaling pathway, upregulation of GPX4 expression, and enhanced iron ion excretion. In conclusion, ellagic acid demonstrates promising neuroprotective effects against arsenic-induced neurotoxicity by mitigating neuronal ferroptosis and cognitive impairment.

15.
Alzheimers Dement ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129310

RESUMO

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

16.
J Alzheimers Dis ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39177601

RESUMO

Background: Little is known about the associations of hearing loss, hippocampal volume, and motoric cognitive risk syndrome (MCR) in older adults. Objective: We aimed to investigate the associations of hearing loss with MCR and hippocampal volume; and the interaction of hearing loss with hippocampal volume on MCR. Methods: This population-based cross-sectional study included 2,540 dementia-free participants (age≥60 years; 56.5% women) in the baseline examination of the Multimodal Interventions to Delay Dementia and Disability in rural China. Data were collected through face-to-face interviews, clinical examination, and laboratory tests. Hearing function was assessed using pure tone audiometry test. In the subsample (n = 661), hippocampal volume was assessed on structural magnetic resonance images. Data were analyzed with logistic regression models. Results: In the total sample, MCR was diagnosed in 246 persons (9.7%). High-frequency hearing loss was significantly associated with an increased likelihood of MCR and slow gait. In the subsample, the restricted cubic spline plots indicated an inverted U-shaped nonlinear relationship between high-frequency hearing performance and hippocampal volume. Moreover, greater hippocampal volume was significantly associated with a deduced likelihood of MCR and subjective cognitive decline (SCD). In addition, there were statistical interactions of high-frequency hearing loss with hippocampal volume on MCR and slow gait (p for interaction < 0.05), such that the associations were statistically significant only among participants free of high-frequency hearing loss. Conclusions: High-frequency hearing loss was associated with an increased likelihood of MCR in older adults. The hippocampus might play a part in the relationship of high-frequency hearing loss and MCR.

17.
Mil Med Res ; 11(1): 61, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169440

RESUMO

BACKGROUND: Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex®, a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. METHODS: Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N-diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. RESULTS: GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. CONCLUSIONS: The use of an FDA-approved CBD (Epidiolex®) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.


Assuntos
Canabidiol , Disfunção Cognitiva , Hiperalgesia , Neurogênese , Doenças Neuroinflamatórias , Síndrome do Golfo Pérsico , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Ratos , Síndrome do Golfo Pérsico/tratamento farmacológico , Síndrome do Golfo Pérsico/complicações , Masculino , Hiperalgesia/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Neurogênese/efeitos dos fármacos , Modelos Animais de Doenças , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transtornos do Humor/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Brometo de Piridostigmina/farmacologia , Brometo de Piridostigmina/uso terapêutico
18.
Comput Methods Programs Biomed ; 256: 108372, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39178503

RESUMO

BACKGROUND AND OBJECTIVE: Establishing accurate one-to-one morphological correspondence between different hippocampal surfaces is a solid foundation for the analysis of AD-induced hippocampal morphological changes. However, owing to the large variations between hippocampal surfaces, exiting registration work either fails to obtain the accurate matching of local and overall morphological features or does not preserve the bijectivity during parametric mapping. For this reason, this study proposes a hybrid-feature based spherical quasi-conformal registration (HSQR) method that can effectively maintain the diffeomorphic property while meeting the hybrid-feature matching constraints in the spherical parameter domain. METHODS: The HSQR algorithm is primarily achieved through hippocampal surface hybrid feature extraction and spherical quasi-conformal registration. First, hybrid features for a comprehensive morphological description of the hippocampal surface were established, which included essential anatomical features (landmarks) and mean curvature (intensity) features to ensure the accuracy of surface morphology alignment. Second, spherical parameterization was applied to genus-0 closed surfaces, such as the hippocampus, which maximized the preservation of the original local surface morphology through area-preserving properties. Third, a novel spherical quasi-conformal registration algorithm that can handle large deformations is established. It transforms a 3D spherical parameter domain into a 2D plane parameter domain using iterative local stereo projection to improve the efficiency of the registration algorithm. Subsequently, by controlling the Beltramin coefficient, the hybrid morphological features could be aligned while ensuring bijection before and after registration. RESULTS: Using a cohort including 161 patients with amyloid-ß (Aß) positive Alzheimer disease (AD), 234 Aß positive mild cognitive impairment (MCI) and 266 Aß negative cognitively unimpaired (CU) individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we set up the experiment which indicated that the HSQR-based whole bilateral hippocampal atrophy features demonstrated the stronger statistical power for group morphological differences of CU vs. MCI with q-value: 0.0453 for left hippocampus and 0.0401 for right hippocampus and group morphological differences of AD vs. MCI with q-value: 0.0282 for left hippocampus and 0.0421 for right hippocampus. CONCLUSIONS: Our registration algorithm may provide a solid foundation for the accurate quantification of hippocampal surface morphological changes for the differential diagnosis and tracking of AD.

19.
Autophagy ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171951

RESUMO

Genome-wide association studies identified variants around the BIN1 (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. Bin1 knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated Bin1 RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, Bin1 knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the Bin1 knockdown-induced dendritic regression. The subsequent molecular study demonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated Bin1 knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.

20.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39193025

RESUMO

Mesial temporal lobe epilepsy (MTLE) is a common cause of seizures, and hippocampal sclerosis (HS) is the predominant subtype. BRAFV600E mutations in MTLE-HS have only been reported infrequently. Herein, we illustrate the neurologic, radiological, and histopathological details of a patient with MTLE-HS and BRAFV600E mutant neurons. A 31-year-old male with medically refractory epilepsy presented with magnetic resonance imaging (MRI) and electroencephalography (EEG) findings typical of mesial temporal sclerosis without a mass lesion. The surgical specimens showed ILAE Type 1 HS with neurons immunopositive for BRAFV600E mutant protein distributed along the Cornu Ammonis (CA) curvature. Instead of the normal mostly perpendicular orientation of pyramidal neurons relative to the hippocampal surface, the BRAF mutant neurons were often oriented in a parallel manner. On CD34 immunostaining, sparse clusters or nodules of CD34+ stellate cells and single immunopositive stellate cells were identified. BRAFV600E or CD34 immunopositive cells were less than 1 % of total cells. The patient responded well to surgery with no further seizures after 2 years and occasional auras. Hippocampal BRAF mutant non-expansive lesion (HBNL) has been used to describe such lesions with preserved cytoarchitecture and without overt tumor mass. Others may argue for the dual pathology of HS with early ganglioglioma. Whether pre-neoplastic lesions or early tumors, these cases are important for understanding early glioneuronal tumorigenesis and suggest that BRAFV600E studies should be routinely performed on MTLE-HS cases in the setting of clinical trials. With next-generation sequencing, a FANCL deletion was detected in almost half of the alleles in our case, suggesting that many of the histologically normal-appearing cells of the hippocampus contain this alteration. FANCL mutations can result in cytogenetic anomalies and defective DNA repair and therefore may underlie the development of a low frequency BRAF alteration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA