Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Pharm ; 21(8): 4082-4097, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38993084

RESUMO

Cushioned lipid bilayers are structures consisting of a lipid bilayer supported on a solid substrate with an intervening layer of soft material. They offer possibilities for studying the behavior and interactions of biological membranes more accurately under physiological conditions. In this work, we continue our studies of cushion formation induced by histatin 5 (24Hst5), focusing on the effect of the length of the peptide chain. 24Hst5 is a short, positively charged, intrinsically disordered saliva peptide, and here, both a shorter (14Hst5) and a longer (48Hst5) peptide variant were evaluated. Experimental surface active techniques were combined with coarse-grained Monte Carlo simulations to obtain information about these peptides. Results show that at 10 mM NaCl, both the shorter and the longer peptide variants behave like 24Hst5 and a cushion below the bilayer is formed. At 150 mM NaCl, however, no interaction is observed for 24Hst5. On the contrary, a cushion is formed both in the case of 14Hst5 and 48Hst5, and in the latter, an additional thick, diffuse, and highly hydrated layer of peptide and lipid molecules is formed, on top of the bilayer. Similar trends were observed from the simulations, which allowed us to hypothesize that positively charged patches of the amino acids lysine and arginine in all three peptides are essential for them to interact with and translocate over the bilayer. We therefore hypothesize that electrostatic interactions are important for the interaction between the solid-supported lipid bilayers and the peptide depending on the linear charge density through the primary sequence and the positively charged patches in the sequence. The understanding of how, why, and when the cushion is formed opens up the possibility for this system to be used in the research and development of new drugs and pharmaceuticals.


Assuntos
Histatinas , Bicamadas Lipídicas , Método de Monte Carlo , Bicamadas Lipídicas/química , Histatinas/química , Peptídeos Antimicrobianos/química
2.
J Pept Sci ; 30(9): e3609, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38676397

RESUMO

Peptide dhvar4, derived from the active domain of our salivary peptide histatin 5, bears a Phe residue in the middle of its hydrophilic face when folded into an α-helix. We then synthesized an analog with this Phe replaced by Lys and two analogs preserving Phe but bearing two and three α-aminoisobutyric acid (Aib) residues to stabilize the helical structure. The aim of this design was to verify which of the two features is more favorable to the biological activity. We performed a conformational study by means of circular dichroism and nuclear magnetic resonance, made antibacterial tests, and assessed the stability of the peptides in human serum. We observed that amphiphilicity is more important than helix stability, provided a peptide can adopt a helical conformation in a membrane-mimetic environment.


Assuntos
Antibacterianos , Histatinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Histatinas/química , Histatinas/farmacologia , Humanos , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Sequência de Aminoácidos
3.
Metallomics ; 15(12)2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38061812

RESUMO

Histatin-5 (Hist-5) is an antimicrobial peptide found in human saliva that functions to defend the oral cavity from microbial infections, such as those caused by the fungal pathogen Candida albicans (C. albicans). Hist-5 can bind Cu in multiple oxidation states, Cu2+ and Cu+in vitro, and supplemental Cu2+ has been shown to improve the fungicidal activity of the peptide against C. albicans in culture. However, the exact role of Cu on the antifungal activity of Hist-5 and whether direct peptide-Cu interactions occur intracellularly has yet to be fully determined. Here, we used a combination of fluorescence spectroscopy and confocal microscopy experiments to show reversible Cu-dependent quenching of a fluorescent Hist-5 analogue, Hist-5*, indicating a direct interaction between Hist-5 and intracellular Cu. X-ray fluorescence microscopy images revealed peptide-induced changes to cellular Cu distribution and cell-associated Cu content. These data support a model in which Hist-5 can facilitate the hyperaccumulation of Cu in C. albicans and directly interact with Cu intracellularly to increase the fungicidal activity of Hist-5.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/metabolismo , Histatinas/farmacologia , Histatinas/metabolismo , Cobre/metabolismo , Microscopia Confocal , Testes de Sensibilidade Microbiana
4.
AAPS PharmSciTech ; 24(7): 177, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639072

RESUMO

Antimicrobial peptides have appeared to be promising candidates for therapeutic purposes due to their broad antimicrobial activity and non-toxicity. Histatin-5 (Hst-5) is a notable salivary antimicrobial peptide that exhibited therapeutic properties in the oral cavity. Oral mucositis is an acute inflammation of the oral cavity, following cancer therapy. The current treatment methods of oral mucositis have low effectiveness. The aim of this study was to design, formulate and characterize a mucoadhesive gel delivery system for Hst-5 usage in the treatment of oral mucositis. Carbopol 934 and hydroxypropyl methylcellulose (HPMC) have been used in the development of a Hst-5 mucoadhesive gel that was optimized by using Box-Behnken design. The optimized formulation was evaluated in-vitro, based on mucoadhesive strength, viscoelasticity, spreadability, release rate, peptide secondary structure analysis, antimicrobial activity, and storage stability. The efficacy of Hst-5 gel was assessed in vivo in a chemotherapy-induced mucositis model. The results showed a sustained release of Hst-5 from the new formulation. Hst-5 gel exerted antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. The histopathological, immunohistochemical and statistical analysis showed that the Hst-5 gel had wound healing activity in vivo. The findings of this study indicate that the mentioned compound possesses promising potential as a novel and efficient therapeutic agent in managing oral mucositis. Moreover, the results suggest that the compound is commercially feasible for further development and utilization.


Assuntos
Mucosite , Estomatite , Histatinas , Estomatite/tratamento farmacológico , Candida albicans , Escherichia coli
5.
Appl Microbiol Biotechnol ; 107(16): 5179-5189, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395749

RESUMO

This study aimed to investigate the effects of salivary histatin 5 (Hst5) on Porphyromonas gingivalis (P. gingivalis) biofilms in vitro and in vivo and the possible mechanisms. In in vitro experiments, P. gingivalis biomass was determined by crystal violet staining. Polymerase chain reaction, scanning electron microscopy, and confocal laser scanning microscopy were used to determine the Hst5 concentration. A search for potential targets was performed using transcriptomic and proteomic analyses. In vivo experimental periodontitis was established in rats to evaluate the effects of Hst5 on periodontal tissues. Experimental results showed that 25 µg/mL Hst5 effectively inhibited biofilm formation, and increased concentrations of Hst5 increased the inhibitive effect. Hst5 might bind to the outer membrane protein RagAB. A combination of transcriptomic and proteomic analyses revealed that Hst5 could regulate membrane function and metabolic processes in P. gingivalis, in which RpoD and FeoB proteins were involved. In the rat periodontitis model, alveolar bone resorption and inflammation levels in periodontal tissues were reduced by 100 µg/mL Hst5. This study showed that 25 µg/mL Hst5 inhibited P. gingivalis biofilm formation in vitro by changing membrane function and metabolic process, and RpoD and FeoB proteins might play important roles in this process. Moreover, 100 µg/mL Hst5 inhibited periodontal inflammation and alveolar bone loss in rat periodontitis via its antibacterial and anti-inflammatory effects. KEY POINTS: • Anti-biofilm activity of histatin 5 on Porphyromonas gingivalis was investigated. • Histatin 5 inhibited Porphyromonas gingivalis biofilm formation. • Histatin 5 showed inhibitory effects on the occurrence of rat periodontitis.


Assuntos
Periodontite , Porphyromonas gingivalis , Ratos , Animais , Histatinas/metabolismo , Histatinas/farmacologia , Proteômica , Biofilmes , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Inflamação
6.
Ocul Surf ; 27: 30-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513277

RESUMO

PURPOSE: To determine the efficacy of Histatin-5 (Hst5) peptide treatment in ameliorating dry eye disease (DED) phenotype in an in-vivo mouse model of scopolamine and desiccating stress (SDS) dry eye. METHODS: SDS was induced in female C57BL/6 mice by subcutaneous injections of scopolamine hydrobromide and exposure to low relative humidity and forced air draft for five days. Mouse eyes were topically treated with synthetic Hst5 peptide or balanced salt solution (BSS) twice a day for four days. Control mice were not exposed to SDS induction and did not receive any treatments. Oregon green dextran (OGD) staining was used to evaluate corneal permeability. Histologically, staining with periodic acid schiff (PAS), immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), were used to quantify the number of goblet cells (GC), CD45+ immune cells and apoptotic cells respectively in formalin fixed paraffin embedded (FFPE) mouse whole eye sections. RESULTS: Compared to treatment with BSS, Hst5 treatment significantly lowered corneal epithelial permeability, prevented conjunctival epithelial GC loss, decreased conjunctival CD45+ immune cell infiltration and reduced conjunctival epithelial cell apoptosis. CONCLUSIONS: Hst5 peptide topical treatment significantly improves the clinical parameters observed in SDS experimental model of DED. This is the first report of the efficacy of Hst5 treatment of dry eye phenotype, and potential novel treatment for DED in the clinic. Hst5 represents a new class of efficacious therapeutic agents, demonstrating pro-epithelial and anti-inflammatory activities at the ocular surface.


Assuntos
Síndromes do Olho Seco , Histatinas , Feminino , Animais , Camundongos , Histatinas/metabolismo , Histatinas/uso terapêutico , Modelos Animais de Doenças , Dessecação , Camundongos Endogâmicos C57BL , Síndromes do Olho Seco/metabolismo , Túnica Conjuntiva/patologia
7.
ACS Infect Dis ; 8(9): 1920-1934, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997625

RESUMO

Histatin-5 (Hist-5) is a polycationic, histidine-rich antimicrobial peptide with potent antifungal activity against the opportunistic fungal pathogen Candida albicans. Hist-5 can bind metals in vitro, and metals have been shown to alter the fungicidal activity of the peptide. Previous reports on the effect of Zn2+ on Hist-5 activity have been varied and seemingly contradictory. Here, we present data elucidating the dynamic role Zn2+ plays as an inhibitory switch to regulate Hist-5 fungicidal activity. A novel fluorescently labeled Hist-5 peptide (Hist-5*) was developed to visualize changes in internalization and localization of the peptide as a function of metal availability in the growth medium. Hist-5* was verified for use as a model peptide and retained antifungal activity and mode of action similar to native Hist-5. Cellular growth assays showed that Zn2+ had a concentration-dependent inhibitory effect on Hist-5 antifungal activity. Imaging by confocal microscopy revealed that equimolar concentrations of Zn2+ kept the peptide localized along the cell periphery rather than internalizing, thus preventing cytotoxicity and membrane disruption. However, the Zn-induced decrease in Hist-5 activity and uptake was rescued by decreasing the Zn2+ availability upon addition of a metal chelator EDTA or S100A12, a Zn-binding protein involved in the innate immune response. These results lead us to suggest a model wherein commensal C. albicans may exist in harmony with Hist-5 at concentrations of Zn2+ that inhibit peptide internalization and antifungal activity. Activation of host immune processes that initiate Zn-sequestering mechanisms of nutritional immunity could trigger Hist-5 internalization and cell killing.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Quelantes/farmacologia , Histatinas/metabolismo , Histatinas/farmacologia , Peptídeos/farmacologia , Zinco/metabolismo , Zinco/farmacologia
8.
J Fungi (Basel) ; 7(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947052

RESUMO

Fungi are reported to cause a range of superficial to invasive human infections. These often result in high morbidity and at times mortality. Conventional antifungal agents though effective invariably exhibit drug interactions, treatment-related toxicity, and fail to elicit significant effect, thus indicating a need to look for suitable alternatives. Fungi thrive in humid, nutrient-enriched areas. Such an environment is well-supported by the oral cavity. Despite this, there is a relatively low incidence of severe oral and periodontal fungal infections, attributed to the presence of antimicrobial peptides hosted by saliva, viz. histatin 5 (Hstn 5). It displays fungicidal activity against a variety of fungi including Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and unicellular yeast-like Saccharomyces cerevisiae. Candida albicans alone accounts for about 70% of all global fungal infections including periodontal disease. This review intends to discuss the scope of Hstn 5 as a novel recourse for the control of fungal infections.

9.
Pathogens ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34959564

RESUMO

Candida albicans is maintained as a commensal by immune mechanisms at the oral epithelia. Oral antifungal peptide Histatin 5 (Hst 5) may function in innate immunity, but the specific role Hst 5 plays in C. albicans commensalism is unclear. Since Zn-binding potentiates the candidacidal activity of Hst 5, we hypothesized that Hst 5+Zn would elicit a unique fungal stress response to shape interactions between C. albicans and oral epithelial cells (OECs). We found that Hst 5+Zn but not Hst 5 alone resulted in the activation of cell wall integrity (CWI) signaling, and deletion mutants were then used to determine that CWI-mediated chitin synthesis was protective against killing. Using flow cytometry, we confirmed that Hst 5+Zn-treated cells had significantly elevated levels of cell-wall chitin, mannan and ß-1,3 glucan compared to Hst 5-treated cells. We then tested the activation of host signaling components involved in C. albicans cell-wall recognition. The immunoblot assay of C. albicans-exposed oral epithelial cells showed increased activation of EphA2 and NF-κB but not EGFR. Interestingly, C. albicans treated with Hst 5+Zn induced the global suppression of pro-inflammatory cytokine release from OECs, but an increase in negative regulator IL-10. Hst 5+Zn-treated cells were more adherent but ultimately less invasive to OECs than control cells, thus indicating lowered virulence. Therefore, Hst 5+Zn-treated C. albicans cells are discerned by epithelial monolayers, but are less virulent and promote anti-inflammatory signaling, suggesting that Hst 5+Zn in combination could play a role in regulating commensalism of oral C. albicans through cell wall reorganization.

10.
Biomolecules ; 11(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439875

RESUMO

Usually caused by Candida albicans, buccal candidiasis begins with the morphological transition between yeast and hyphal cells. Over time and without the correct treatment, it can be disseminated through the bloodstream becoming a systemic infection with high mortality rates. C. albicans already shows resistance against antifungals commonly used in treatments. Therefore, the search for new drugs capable of overcoming antifungal resistance is essential. Histatin 5 (Hst5) is an antimicrobial peptide of the Histatin family, that can be found naturally in human saliva. This peptide presents high antifungal activity against C. albicans. However, Hst5 action can be decreased for interaction with enzymes and metal ions present in the oral cavity. The current work aims to bring a brief review of relevant aspects of the pathogenesis and resistance mechanisms already reported for C. albicans. In addition, are also reported here the main immune responses of the human body and the most common antifungal drugs. Finally, the most important aspects regarding Histatin 5 and the benefits of its interaction with metals are highlighted. The intention of this review is to show the promising use of Hst5 metallopeptides in the development of effective drugs.


Assuntos
Antifúngicos/imunologia , Candida albicans , Candidíase , Farmacorresistência Fúngica , Histatinas/imunologia , Saliva/imunologia , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/tratamento farmacológico , Candidíase/imunologia , Humanos
11.
Clin Exp Dent Res ; 7(3): 365-375, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951334

RESUMO

OBJECTIVES: Enterococcus faecalis has been associated with root canal infections, while Streptococcus mutans has a central role in the etiology of dental caries. One of the main reasons of endodontic failure has been associated to the presence of E. faecalis and the formation of biofilms. S. mutans inhabits the oral cavity, specifically the dental plaque, which is a multispecies biofilm formed on the hard surfaces of the tooth. The biofilm formation is the main factor determining the pathogenicity of numerous bacteria. Natural antimicrobial peptides in the saliva protect against pathogenic bacteria and biofilms. The aim of this study was to assess the ultrastructural damage induced by salivary peptides in bacteria involved in biofilms has not been previously studied. MATERIAL AND METHODS: Enterococcus faecalis and S. mutans incubated with cystatin C, chromogranin A, or histatin 5 were morphologically analyzed and counted. The ultrastructural damage was evaluated by transmission electron microscopy (TEM). RESULTS: A decrease in bacterial numbers was observed after incubation with cystatin C, chromogranin A, or histatin 5, compared to the control group (P < 0.001). Ultrastructural damage in E. faecalis and S. mutans incubated with salivary peptides was found in the cell wall, plasma membrane with a decreased distance between the bilayers, a granular pattern in the cytoplasm, and pyknotic nucleoids. CONCLUSIONS: This study demonstrated that salivary peptides exert antibacterial activity and induce morphological damage on E. faecalis and S. mutans. Knowledge on the ultrastructural damage inflicted by salivary antimicrobial peptides on two important bacteria causing dental caries and root canal infections could aid the design of new therapeutic approaches to facilitate the elimination of these bacteria.


Assuntos
Anti-Infecciosos , Cárie Dentária , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Cromogranina A , Cistatina C , Enterococcus faecalis , Histatinas , Humanos , Streptococcus mutans
12.
Antibiotics (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925785

RESUMO

There are no studies on Candida colonization and micropeptides of saliva in any patient. Therefore, we studied the effects of the salivary antimicrobial peptide histatin 5 on oral fungal colonization; subjects were subdivided into Down syndrome (D) and normal (N) groups by age: N-1 and D-1, age <20 years; N-2 and D-2, age >40 years. Histatin 5 concentration in saliva was measured by enzyme-linked immunosorbent assay. Oral Candida species were identified using CHROMagar Candida. Candida colonization was significantly enhanced in the D-1 and D-2 groups compared to the N-1 and N-2 groups. There was no predominant difference in salivary histatin 5 concentration between the D-1 and N-1 groups, but it was significantly lower in the D-2 group than in the N-2 group. Only in the N-2 group was there a correlation between the concentration of histatin 5 and total protein, while no correlation was found in the other groups. In elderly patients with Down syndrome, the decrease in histatin 5 shown in this study may lead to oral Candida colony formation. Therefore, the results of this study suggest that a deficiency of the antimicrobial peptide histatin 5 could possibly induce oral Candida infection in DS.

13.
Cell Prolif ; 54(5): e13020, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33694264

RESUMO

OBJECTIVES: Anti-microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His-5) was synthesized and the transport efficiency and anti-fungal effect were measured to evaluate the promotion of His-5 modified by TDNs. MATERIALS AND METHODS: Tetrahedral DNA nanostructures/His-5 complex was prepared via electrostatic attraction and characterized by transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The anti-fungal effect of the TDN/His-5 complex was evaluated by determining the growth curve and colony-forming units of C. albicans. The morphological transformation of C. albicans was observed by light microscope and scanning electron microscope (SEM). Immunofluorescence was performed, and potassium efflux was detected to mechanistically demonstrate the efficacy of TDN/His-5. RESULTS: The results showed that Histatin 5 modified by TDNs had preferable stability in serum and was effectively transported into C. albicans, leading to the increased formation of intracellular reactive oxygen species, higher potassium efflux and enhanced anti-fungal effect against C. albicans. CONCLUSIONS: Our study showed that TDN/His-5 was synthesized successfully. And by the modification of TDNs, His-5 showed increased transport efficiency and improved anti-fungal effect.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , DNA/química , Histatinas/química , Nanoestruturas/química , Antifúngicos/química , Antifúngicos/metabolismo , Estabilidade de Medicamentos , Nanoestruturas/toxicidade , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Eletricidade Estática
14.
Fungal Genet Biol ; 149: 103529, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33596477

RESUMO

Candida albicans is a commensal organism and opportunistic pathogen that can form biofilms that colonize surfaces of medical devices, such as implants, catheters, and dentures. Compared to planktonic C. albicans cells, cells in biofilms exhibit increased resistance to treatment. Histatin 5 (Hst-5) is an antimicrobial peptide that is natively secreted by human salivary glands and has strong antifungal activity against C. albicans. However, C. albicans produces secreted aspartic proteases (Saps) that can cleave and inactivate Hst-5, limiting its antifungal properties. We previously showed that residue substitutions K11R and K17R within Hst-5 improve its antifungal activity and prevent proteolytic degradation by Saps when treating planktonic C. albicans. Here, we investigated the use of the K11R-K17R peptide as an alternative therapeutic against C. albicans biofilms by assessing its ability to reduce viability of pre-formed biofilms and to inhibit the formation of biofilms and showed that K11R-K17R had improved activity compared to Hst-5. Based on these results, we incorporated K11R-K17R and Hst-5 into polyelectrolyte multilayer (PEM) surface coatings and demonstrated that films functionalized with K11R-K17R reduced the formation of C. albicans biofilms. Our results demonstrate the therapeutic potential of the K11R-K17R Hst-5 variant in preventing and treating biofilms.


Assuntos
Candida albicans/crescimento & desenvolvimento , Histatinas/genética , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/metabolismo , Histatinas/metabolismo , Histatinas/fisiologia , Humanos , Proteólise
15.
Saudi Dent J ; 32(8): 410-416, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304085

RESUMO

INTRODUCTION: Early childhood caries is a multifactorial disease. Saliva plays an important role in initiation and protection against caries, and its composition is greatly affected by nutritional status. This study was conducted to determine the impact of salivary lactoperoxidase and histatin-5 on the severity of ECC in relation to nutritional status. MATERIALS AND METHODS: The sample consisted of 120 children aged 5 years, classified into eight groups: mild ECC in underweight children, mild ECC in normalweight children, moderate ECC in underweight children, moderate in ECC normal weight children, severe ECC in underweight children, severe ECC in normalweight, caries-free (control) underweight children and caries-free normalweight children. Each group consisted of 15 children. Stimulated saliva was collected. Salivary lactoperoxidase was analysed using Human LPO/ Lactoperoxidase ELISA Kit (CLIA)-LS-F29892, and salivary histatin-5 was analysed using Human Histatin-5 ELISA Kit MBS705083_48T. RESULTS: Lactoperoxidase and histatin-5 concentrations were significantly higher in caries-free children than in children with ECC, and they were higher in children with mild ECC than in children with moderate ECC or in children with severe ECC. They were significantly higher among children with normal weight than among those who were underweight (p < 0.01). ECC and nutritional status recorded non-significant interactions with both LPO and HST-5 (p > 0.01), but there was significant interaction between these two variables and LPO and HST-5 together (p < 0.01). The Pearson's correlation coefficient test recorded significant negative correlations between ECC severity and both salivary lactoperoxidase and histatin-5 among the eight study groups, whereas significant positive correlations were recorded between BMI values and both salivary lactoperoxidase and histatin-5 among the eight study groups. CONCLUSION: Salivary lactoperoxidase and histatin-5 may be affected by nutritional status, and these two parameters may play an important role in caries prevention at high concentrations. There is interaction between these two parameters and ECC severity and nutrition.

16.
J Fungi (Basel) ; 6(3)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751915

RESUMO

Histatin 5 (Hst 5) is an antimicrobial peptide produced in human saliva with antifungal activity for opportunistic pathogen Candida albicans. Hst 5 binds to multiple cations including dimerization-inducing zinc (Zn2+), although the function of this capability is incompletely understood. Hst 5 is taken up by C. albicans and acts on intracellular targets under metal-free conditions; however, Zn2+ is abundant in saliva and may functionally affect Hst 5. We hypothesized that Zn2+ binding would induce membrane-disrupting pores through dimerization. Through the use of Hst 5 and two derivatives, P113 (AA 4-15 of Hst 5) and Hst 5ΔMB (AA 1-3 and 15-19 mutated to Glu), we determined that Zn2+ significantly increases killing activity of Hst 5 and P113 for both C. albicans and Candida glabrata. Cell association assays determined that Zn2+ did not impact initial surface binding by the peptides, but Zn2+ did decrease cell association due to active peptide uptake. ATP efflux assays with Zn2+ suggested rapid membrane permeabilization by Hst 5 and P113 and that Zn2+ affinity correlates to higher membrane disruption ability. High-performance liquid chromatography (HPLC) showed that the higher relative Zn2+ affinity of Hst 5 likely promotes dimerization. Together, these results suggest peptide assembly into fungicidal pore structures in the presence of Zn2+, representing a novel mechanism of action that has exciting potential to expand the list of Hst 5-susceptible pathogens.

17.
Microorganisms ; 8(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664360

RESUMO

Candida albicans is a common microorganism of human's microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host's innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.

18.
ACS Appl Mater Interfaces ; 12(2): 3021-3031, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31877018

RESUMO

Numerous methods have been investigated to manage dental caries, one of the top three diseases threatening human health as reported by the World Health Organization. An innovative strategy was proposed to prevent dental caries and achieve self-healing of the decayed tooth, and a novel bioactive peptide was designed and synthesized to construct an antibiofouling and mineralizing dual-bioactive tooth surface. Compared to its original endogenous peptide, the synthesized bioactive peptide showed statistically significantly higher binding affinity to the tooth surface, stronger suppression of demineralization, and a certain promotion of tooth remineralization. The abilities of the peptide to inhibit Streptococcus mutans (S. mutans) biofilm formation and S. mutans adhesion on the tooth surface were not affected after synthesis. Biocompatibility tests revealed the safety of the synthesized bioactive peptide. Interaction mechanisms between the synthesized bioactive peptide and tooth surface were also explained by molecular dynamic simulation analysis. In summary, the synthesized bioactive peptide could be applied safely to prevent dental caries and effectively induce in situ self-healing remineralization for treatment of the decayed tooth.


Assuntos
Incrustação Biológica , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Remineralização Dentária , Dente/patologia , Cicatrização , Adsorção , Linhagem Celular , Sobrevivência Celular , Esmalte Dentário/química , Durapatita/química , Fibroblastos/patologia , Fluorescência , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Simulação de Dinâmica Molecular , Peptídeos/química , Streptococcus mutans , Termodinâmica
19.
Protein Sci ; 29(2): 480-493, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675138

RESUMO

Histatin 5 (Hst-5) is an antimicrobial peptide with strong antifungal activity against Candida albicans, an opportunistic pathogen that is a common cause of oral thrush. The peptide is natively secreted by human salivary glands and shows promise as an alternative therapeutic against infections caused by C. albicans. However, Hst-5 can be cleaved and inactivated by a family of secreted aspartic proteases (Saps) produced by C. albicans. Single-residue substitutions can significantly affect the proteolytic resistance of Hst-5 to Saps and its antifungal activity; the K17R substitution increases resistance to proteolysis, while the K11R substitution enhances antifungal activity. In this work, we showed that the positive effects of these two single-residue modifications can be combined in a single peptide, K11R-K17R, with improved proteolytic resistance and antifungal activity. We also investigated the effect of additional single-residue substitutions, with a focus on the effect of addition or removal of negatively charged residues, and found Sap-dependent effects on degradation. Both single- and double-substitutions affected the kinetics of proteolytic degradation of the intact peptide and of the fragments formed during degradation. Our results demonstrate the importance of considering proteolytic stability and not just antimicrobial activity when designing peptides for potential therapeutic applications.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/efeitos dos fármacos , Histatinas/metabolismo , Proteólise/efeitos dos fármacos , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Células HEK293 , Histatinas/química , Humanos , Cinética , Testes de Sensibilidade Microbiana
20.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466342

RESUMO

Antimicrobial peptides (AMPs) have potential antifungal activities; however, their intracellular protein targets are poorly reported. Proteome microarray is an effective tool with high-throughput and rapid platform that systematically identifies the protein targets. In this study, we have used yeast proteome microarrays for systematical identification of the yeast protein targets of Lactoferricin B (Lfcin B) and Histatin-5. A total of 140 and 137 protein targets were identified from the triplicate yeast proteome microarray assays for Lfcin B and Histatin-5, respectively. The Gene Ontology (GO) enrichment analysis showed that Lfcin B targeted more enrichment categories than Histatin-5 did in all GO biological processes, molecular functions, and cellular components. This might be one of the reasons that Lfcin B has a lower minimum inhibitory concentration (MIC) than Histatin-5. Moreover, pairwise essential proteins that have lethal effects on yeast were analyzed through synthetic lethality. A total of 11 synthetic lethal pairs were identified within the protein targets of Lfcin B. However, only three synthetic lethal pairs were identified within the protein targets of Histatin-5. The higher number of synthetic lethal pairs identified within the protein targets of Lfcin B might also be the reason for Lfcin B to have lower MIC than Histatin-5. Furthermore, two synthetic lethal pairs were identified between the unique protein targets of Lfcin B and Histatin-5. Both the identified synthetic lethal pairs proteins are part of the Spt-Ada-Gcn5 acetyltransferase (SAGA) protein complex that regulates gene expression via histone modification. Identification of synthetic lethal pairs between Lfcin B and Histatin-5 and their involvement in the same protein complex indicated synergistic combination between Lfcin B and Histatin-5. This hypothesis was experimentally confirmed by growth inhibition assay.


Assuntos
Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Histatinas/farmacologia , Lactoferrina/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Análise Serial de Proteínas , Ligação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Mutações Sintéticas Letais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA