Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cell Rep ; 22(5): 1141-1150, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386103

RESUMO

The affinity of transcription factors (TFs) for their target DNA is a critical determinant of gene expression. Whether the DNA-binding domain (DBD) of TFs alone can regulate binding affinity to DNA is an important question for identifying the design principle of TFs. We studied ANAC019, a member of the NAC TF family of proteins in Arabidopsis, and found a well-conserved histidine switch located in its DBD, which regulates both homodimerization and transcriptional control of the TF through H135 protonation. We found that the removal of a C-terminal intrinsically disordered region (IDR) in the TF abolished the pH-dependent binding of the N-terminal DBD to DNA. We propose a mechanism in which long-range electrostatic interactions between DNA and the negatively charged C-terminal IDR turns on the pH dependency of the DNA-binding affinity of the N-terminal DBD.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína
2.
Proc Natl Acad Sci U S A ; 114(52): 13661-13666, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229866

RESUMO

Metalloregulators allosterically control transcriptional activity through metal binding-induced reorganization of ligand residues and/or hydrogen bonding networks, while the coordination atoms on the same ligand residues remain seldom changed. Here we show that the MarR-type zinc transcriptional regulator ZitR switches one of its histidine nitrogen atoms for zinc coordination during the allosteric control of DNA binding. The Zn(II)-coordination nitrogen on histidine 42 within ZitR's high-affinity zinc site (site 1) switches from Nε2 to Nδ1 upon Zn(II) binding to its low-affinity zinc site (site 2), which facilitates ZitR's conversion from the nonoptimal to the optimal DNA-binding conformation. This histidine switch-mediated cooperation between site 1 and site 2 enables ZitR to adjust its DNA-binding affinity in response to a broad range of zinc fluctuation, which may allow the fine tuning of transcriptional regulation.


Assuntos
Histidina/química , Histidina/metabolismo , Zinco/metabolismo , Regulação Alostérica , Sítios de Ligação , DNA/química , DNA/metabolismo , Espaço Intracelular/metabolismo , Cinética , Conformação Molecular , Relação Estrutura-Atividade
3.
J Biol Chem ; 290(28): 17262-8, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26013822

RESUMO

The low density lipoprotein receptor-related protein 1 (LRP1) is a member of the low density lipoprotein receptor family and plays important roles in a number of physiological and pathological processes. Expression of LRP1 requires the receptor-associated protein (RAP), a molecular chaperone that binds LRP1 and other low density lipoprotein receptor family members in the endoplasmic reticulum and traffics with them to the Golgi where the acidic environment causes its dissociation. Exogenously added RAP is a potent LRP1 antagonist and binds to LRP1 on the cell surface, preventing ligands from binding. Following endocytosis, RAP dissociates in the acidic endosome, allowing LRP1 to recycle back to the cell surface. The acid-induced dissociation of RAP is mediated by its D3 domain, a relatively unstable three-helical bundle that denatures at pH <6.2 due to protonation of key histidine residues on helices 2 and 3. To develop an LRP1 inhibitor that does not dissociate at low pH, we introduced a disulfide bond between the second and third helices in the RAP D3 domain. By combining this disulfide bond with elimination of key histidine residues, we generated a stable RAP molecule that is resistant to both pH- and heat-induced denaturation. This molecule bound to LRP1 with high affinity at both neutral and acidic pH and proved to be a potent inhibitor of LRP1 function both in vitro and in vivo, suggesting that our stable RAP molecule may be useful in multiple pathological settings where LRP1 blockade has been shown to be effective.


Assuntos
Proteína Associada a Proteínas Relacionadas a Receptor de LDL/química , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Receptores de LDL/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Desnaturação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA