Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Cell ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39094569

RESUMO

The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.

2.
Genes Cells ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977420

RESUMO

Appropriate responses to environmental challenges are imperative for the survival of all living organisms. Exposure to low-dose stresses is recognized to yield increased cellular fitness, a phenomenon termed hormesis. However, our molecular understanding of how cells respond to low-dose stress remains profoundly limited. Here we report that histone variant H3.3-specific chaperone, HIRA, is required for acquired tolerance, where low-dose heat stress exposure confers resistance to subsequent lethal heat stress. We found that human HIRA activates stress-responsive genes, including HSP70, by depositing histone H3.3 following low-dose stresses. These genes are also marked with histone H3 Lys-4 trimethylation and H3 Lys-9 acetylation, both active chromatin markers. Moreover, depletion of HIRA greatly diminished acquired tolerance, both in normal diploid fibroblasts and in HeLa cells. Collectively, our study revealed that HIRA is required for eliciting adaptive stress responses under environmental fluctuations and is a master regulator of stress tolerance.

3.
Eur J Cell Biol ; 103(3): 151439, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968704

RESUMO

Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.


Assuntos
Centrossomo , Células-Tronco Embrionárias Murinas , Proteínas Serina-Treonina Quinases , Animais , Centrossomo/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Fosforilação
4.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928110

RESUMO

Histone chaperones are integral to chromatin dynamics, facilitating the assembly and disassembly of nucleosomes, thereby playing a crucial role in regulating gene expression and maintaining genomic stability. Moreover, they prevent aberrant histone interactions prior to chromatin assembly. Disruption in histone chaperone function may result in genomic instability, which is implicated in pathogenesis. This review aims to elucidate the role of histone chaperones in cancer pathologies and explore their potential as therapeutic targets. Histone chaperones have been found to be dysregulated in various cancers, with alterations in expression levels, mutations, or aberrant interactions leading to tumorigenesis and cancer progression. In addition, this review intends to highlight the molecular mechanisms of interactions between histone chaperones and oncogenic factors, underscoring their roles in cancer cell survival and proliferation. The dysregulation of histone chaperones is significantly correlated with cancer development, establishing them as active contributors to cancer pathology and viable targets for therapeutic intervention. This review advocates for continued research into histone chaperone-targeted therapies, which hold potential for precision medicine in oncology. Future advancements in understanding chaperone functions and interactions are anticipated to lead to novel cancer treatments, enhancing patient care and outcomes.


Assuntos
Chaperonas de Histonas , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica
5.
Mol Cell ; 84(14): 2601-2617.e12, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925115

RESUMO

The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.


Assuntos
Proteínas de Ciclo Celular , Microscopia Crioeletrônica , Chaperonas de Histonas , Histonas , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/química , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Multimerização Proteica , Sítios de Ligação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Domínios e Motivos de Interação entre Proteínas
6.
Mol Cell Proteomics ; 23(7): 100795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848995

RESUMO

At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Epigênese Genética , Chaperonas de Histonas , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Mutação , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica de Plantas , Fator 1 de Modelagem da Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/genética
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928493

RESUMO

The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Histonas/metabolismo , Histonas/genética , Feminino , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cromatina/genética , Nucleossomos/metabolismo , Família Multigênica
8.
Mar Life Sci Technol ; 6(2): 183-197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827131

RESUMO

Histone modification and nucleosome assembly play important roles in chromatin-related processes. Histone chaperones form different complexes and coordinate histone transportation and assembly. Various histone chaperone complexes have been identified in different organisms. The ciliate protozoa (ciliates) have various chromatin structures and different nuclear morphology. However, histone chaperone components and functions of different subunits remain unclear in ciliates. Tetrahymema thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally inactive micronucleus (MIC) which exhibit multiple replication and various chromatin remodeling progresses during vegetative growth and sexual developmental stages. Here, we found histone chaperone RebL1 not only localized evenly in the transcriptionally active MAC but also dynamically changed in the MIC during vegetative growth and sexual developmental stages. REBL1 knockdown inhibited cellular proliferation. The macronuclear morphology became bigger in growing mutants. The abnormal macronuclear structure also occurred in the starvation stage. Furthermore, micronuclear meiosis was disturbed during sexual development, leading to a failure to generate new gametic nuclei. RebL1 potentially interacted with various factors involved in histone-modifying complexes and chromatin remodeling complexes in different developmental stages. REBL1 knockdown affected expression levels of the genes involved in chromatin organization and transcription. Taken together, RebL1 plays a vital role in maintaining macronuclear structure stability and gametogenesis in T. thermophila. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00219-z.

9.
Curr Opin Plant Biol ; 80: 102551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776573

RESUMO

Histone chaperones and histone variants play crucial roles in DNA replication, gene transcription, and DNA repair in eukaryotes. Histone chaperones reversibly promote nucleosome assembly and disassembly by incorporating or evicting histones and histone variants to modulate chromatin accessibility, thereby altering the chromatin states and modulating DNA-related biological processes. Cofactors assist histone chaperones to target specific chromatin regions to regulate the exchange of histones and histone variants. In this review, we summarize recent progress in the interplay between histone variants and chaperones in plants. We discuss the structural basis of chaperone-histone complexes and the mechanisms of their cooperation in regulating gene transcription and plant development.


Assuntos
Chaperonas de Histonas , Histonas , Histonas/metabolismo , Histonas/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Plantas/metabolismo , Plantas/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Regulação da Expressão Gênica de Plantas , Nucleossomos/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713623

RESUMO

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Histonas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/metabolismo
11.
Plant Cell Physiol ; 65(7): 1135-1148, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597891

RESUMO

The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, nuclear autoantigenic sperm protein (NASP). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knock-out mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Centrômero , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Histonas/metabolismo , Histonas/genética , Marchantia/genética , Marchantia/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
12.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38600242

RESUMO

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Assuntos
Proteína Centromérica A , Instabilidade Cromossômica , Histonas , Humanos , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Histonas/metabolismo , Histonas/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Células HeLa , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Centrômero/metabolismo
13.
Genes Dev ; 38(3-4): 189-204, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38479839

RESUMO

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Assuntos
Histonas , Schizosaccharomyces , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Heterocromatina/genética , Replicação do DNA/genética , DNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Epigênese Genética
14.
Mol Cell Biol ; 44(2): 72-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482865

RESUMO

ANP32e, a chaperone of H2A.Z, is receiving increasing attention because of its association with cancer growth and progression. An unanswered question is whether ANP32e regulates H2A.Z dynamics during the cell cycle; this could have clear implications for the proliferation of cancer cells. We confirmed that ANP32e regulates the growth of human U2OS cancer cells and preferentially interacts with H2A.Z during the G1 phase of the cell cycle. Unexpectedly, ANP32e does not mediate the removal of H2A.Z from chromatin, is not a stable component of the p400 remodeling complex and is not strongly associated with chromatin. Instead, most ANP32e is in the cytoplasm. Here, ANP32e preferentially interacts with H2A.Z in the G1 phase in response to an increase in H2A.Z protein abundance and regulates its protein stability. This G1-specific interaction was also observed in the nucleoplasm but was unrelated to any change in H2A.Z abundance. These results challenge the idea that ANP32e regulates the abundance of H2A.Z in chromatin as part of a chromatin remodeling complex. We propose that ANP32e is a molecular chaperone that maintains the soluble pool of H2A.Z by regulating its protein stability and acting as a buffer in response to cell cycle-dependent changes in H2A.Z abundance.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/metabolismo , Cromatina , Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Ciclo Celular , Estabilidade Proteica
15.
Cell Rep ; 43(4): 113972, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517892

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that mediates cellular adaptation to decreased oxygen availability. HIF-1 recruits chromatin-modifying enzymes leading to changes in histone acetylation, citrullination, and methylation at target genes. Here, we demonstrate that hypoxia-inducible gene expression in estrogen receptor (ER)-positive MCF7 and ER-negative SUM159 human breast cancer cells requires the histone H2A/H2B chaperone facilitates chromatin transcription (FACT) and the H2B ubiquitin ligase RING finger protein 20/40 (RNF20/40). Knockdown of FACT or RNF20/40 expression leads to decreased transcription initiation and elongation at HIF-1 target genes. Mechanistically, FACT and RNF20/40 are recruited to hypoxia response elements (HREs) by HIF-1 and stabilize binding of HIF-1 (and each other) at HREs. Hypoxia induces the monoubiquitination of histone H2B at lysine 120 at HIF-1 target genes in an HIF-1-dependent manner. Together, these findings delineate a cooperative molecular mechanism by which FACT and RNF20/40 stabilize multiprotein complex formation at HREs and mediate histone ubiquitination to facilitate HIF-1 transcriptional activity.


Assuntos
Proteínas de Ligação a DNA , Fator 1 Induzível por Hipóxia , Ubiquitina-Proteína Ligases , Humanos , Hipóxia Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Ligação Proteica , Elementos de Resposta , Fatores de Transcrição/metabolismo , Ativação Transcricional , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
Cells ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334665

RESUMO

HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.


Assuntos
Chaperonas de Histonas , Histonas , Animais , Humanos , Células HeLa , Chaperonas de Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
17.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376141

RESUMO

Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.


Assuntos
Histonas , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Saccharomyces cerevisiae/genética , DNA/metabolismo , Nucleossomos/metabolismo
18.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262410

RESUMO

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Biol Chem ; 300(1): 105538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072046

RESUMO

Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.


Assuntos
Fator de Ligação a CCCTC , Cromatina , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade , Chaperonas de Histonas , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Replicação do DNA , Chaperonas de Histonas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Células NIH 3T3 , Reparo do DNA
20.
mBio ; 15(1): e0289623, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112417

RESUMO

IMPORTANCE: Histone chaperones are proteins that are involved in nucleosome assembly and disassembly and can therefore influence all DNA-dependent processes including transcription, DNA replication, and repair. ASF1 is a histone chaperone that is conserved throughout eukaryotes. In contrast to most other multicellular organisms, a deletion mutant of asf1 in the fungus Sordaria macrospora is viable; however, the mutant is sterile. In this study, we could show that the histone-binding ability of ASF1 is required for fertility in S. macrospora, whereas the function of ASF1 in maintenance of genome stability does not require histone binding. We also showed that the histone modifications H3K27me3 and H3K56ac are misregulated in the Δasf1 mutant. Furthermore, we identified a large duplication on chromosome 2 of the mutant strain that is genetically linked to the Δasf1 allele present on chromosome 6, suggesting that viability of the mutant might depend on the presence of the duplicated region.


Assuntos
Histonas , Sordariales , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas de Histonas/genética , Sordariales/genética , Sordariales/metabolismo , Instabilidade Genômica , Proteínas de Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA