Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Brain Pathol ; : e13305, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354671

RESUMO

Tau interacts with multiple heterogeneous nuclear ribonucleoproteins (hnRNPs)-a family of RNA binding proteins that regulate multiple known cellular functions, including mRNA splicing, mRNA transport, and translation regulation. We have previously demonstrated particularly significant interactions between phosphorylated tau and three hnRNPs (hnRNP A1, hnRNP A2B1, and hnRNP K). Although multiple hnRNPs have been previously implicated in tauopathies, knowledge of whether these hnRNPs colocalize with tau aggregates or show cellular mislocalization in disease is limited. Here, we performed a neuropathological study examining the colocalization between hnRNP A1, hnRNP A2B1, hnRNP K, and phosphorylated tau in two brain regions (hippocampus and frontal cortex) in six disease groups (Alzheimer's disease, mild cognitive impairment, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and controls). Contrary to expectations, hnRNP A1, hnRNP A2B1, and hnRNP K did not colocalize with AT8-immunoreactive phosphorylated tau pathology in any of the tauopathies examined. However, we did observe significant cellular mislocalization of hnRNP A1, hnRNP A2B1 and hnRNP K in tauopathies, with unique patterns of mislocalization observed for each hnRNP. These data point to broad dysregulation of hnRNP A1, A2B1 and K across tauopathies with implications for disease processes and RNA regulation.

2.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339364

RESUMO

Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon C9Orf72 repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro. Using various optical methods and atomic force microscopy, we investigated the influence of the G4 on the formation of cross-beta fibrils by the mutant prion-like domain (PLD) of hnRNP A1 and on the co-separation of the non-mutant protein with a typical SR-rich fragment of a splicing factor (SRSF), which normally drives the assembly of nuclear speckles. The G4 was shown to act in a holdase-like manner, i.e., to restrict the fibrillation of the hnRNP A1 PLD, presumably through interactions with the PLD-flanking RGG motif. These interactions resulted in partial unwinding of the G4, suggesting a helicase-like activity of hnRNP A1 RGG. At the same time, the G4 was shown to disrupt hnRNP A1 co-separation with SRSF, suggesting its possible contribution to pathology through interference with splicing regulation.


Assuntos
Proteína C9orf72 , Quadruplex G , Ribonucleoproteína Nuclear Heterogênea A1 , Transição de Fase , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , RNA/metabolismo , RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ligação Proteica , Dobramento de Proteína , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
3.
Fish Shellfish Immunol ; 154: 109930, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341378

RESUMO

Leader RNAs are viral small non-coding RNAs that has been proved to play important roles in viral replication. Snakehead vesiculovirus (SHVV) is an aquatic virus that has caused huge economic loss in Chinese snakehead fish aquaculture industry. It has been proved that SHVV would generate leader RNA during the process of infection, and leader RNA could interact with viral nucleoprotein to promote viral replication. In this study, we identified that leader RNA could also interact with cellular protein Cold Shock Domain containing E1 (CSDE1) and heterogeneous nuclear ribonucleoproteins A3 (hnRNP A3). Further investigation reveals that overexpression of CSDE1 and hnRNP A3 facilitated SHVV replication. Downregulation of CSDE1 and hnRNP A3 by siRNA inhibited SHVV replication. This study provided a new sight into understand the mechanism of SHVV replication, and a potential anti-SHVV target for drug research.

4.
J Virol ; : e0095124, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287390

RESUMO

The mRNAs encoding the human papillomavirus type 16 (HPV16) E6 and E7 oncogene mRNAs are subjected to extensive alternative RNA splicing at multiple regulated splice sites. One of the most extensively used 5'-splice sites in the HPV16 genome is named SD880 and is located immediately downstream of the E7 open reading frame. Here, we show that a cluster of three GGG-motifs adjacent to HPV16 SD880 interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) H that cooperates with SD880 to stimulate splicing to the upstream HPV16 3'-splice site SA742. This splice site is located in the E7 coding region and is required for the production of the HPV16 226^742 mRNA that encodes the E6^E7 fusion protein. Enhancement of HPV16 E6^E7 mRNA production by hnRNP H occurred at the expense of the intron-retained E6 mRNAs and the spliced E7 mRNAs, demonstrating that hnRNP H controls the relative levels of E6, E7, and E6^E7 proteins. Unexpectedly, overexpression of hnRNP H also promoted retention of the downstream E1 encoding intron and enhanced E1 protein production. We concluded that hnRNP H plays an important role in the HPV16 gene expression program.IMPORTANCEHere, we show that hnRNP H binds to multiple GGG-motifs downstream of human papillomavirus type 16 (HPV16) splice site SD880 and acts in concert with SD880 to promote expression of the HPV16 E6^E7 mRNA. The E6^E7 protein has been shown previously to stabilize the HPV16 E6 and E7 oncoproteins and may as such contribute to the carcinogenic properties of HPV16. In its capacity of major regulator of HPV16 oncogene expression, hnRNP H may be exploited as a target for antiviral drugs to HPV16.

5.
Autoimmunity ; 57(1): 2387076, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39229919

RESUMO

OBJECTIVE: This study aims to explore the effect of NONHSAT042241 on the function of rheumatoid arthritis -fibroblast-like synoviocyte (RA-FLS) and the underlying mechanisms. METHODS: RA-FLS was treated with NONHSAT042241 overexpression and NONHSAT042241 knockdown lentiviruses. Cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry, Transwell assay, western-blot, ELISA, and qRT-PCR were used to measure the changes of cell proliferation, apoptosis, invasion, secretion of inflammatory cytokines and matrix metalloproteinases (MMPs). Fluorescent in situ hybridization (FISH) assay, RNA pull-down assay, mass spectrometry (MS) and RNA immunoprecipitation (RIP) were used to find the target proteins that bond to NONHSAT042241, and western-blot was used to detect the expression of related proteins of Wnt/ß-catenin signaling pathway. RESULTS: Overexpression of NONHSAT042241 inhibited the proliferation of RA-FLS (p < 0.05), invasion, secretion of pro-inflammatory factors (IL-1and IL-6) and MMPs (MMP-1 and MMP-3) (p < 0.05), and elevated the level of pro-apoptotic factors (Bax and cleaved caspase3), while NONHSAT042241 knockdown had the opposite effect. NONHSAT042241 can directly bind to hnRNP D, and down-regulated the expression of ß-catenin (p < 0.05), p-GSK-3ß (p < 0.05), Cyclin D1 (p < 0.05), PCNA (p < 0.05), and thus reduced the cell proliferation. CONCLUSION: NONHSAT042241 may inhibit FLS-mediated rheumatoid synovial proliferation, inflammation and aggression. The underlying mechanisms may be that NONHSAT042241 inhibits the activity of Wnt/ß-catenin signaling.


Assuntos
Artrite Reumatoide , Proliferação de Células , Inflamação , RNA Longo não Codificante , Sinoviócitos , Via de Sinalização Wnt , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Apoptose , beta Catenina/metabolismo , Células Cultivadas
6.
Mol Cell Biol ; 44(9): 372-390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133105

RESUMO

A significant number of the genetic alterations observed in cancer patients lie within nonprotein-coding segments of the genome, including regions coding for long noncoding RNAs (lncRNAs). LncRNAs display aberrant expression in breast cancer (BrCa), but the functional implications of this altered expression remain to be elucidated. By performing transcriptome screen in a triple negative BrCa (TNBC) isogenic 2D and 3D spheroid model, we observed aberrant expression of >1000 lncRNAs during BrCa progression. The chromatin-associated lncRNA MANCR shows elevated expression in metastatic TNBC. MANCR is upregulated in response to cellular stress and modulates DNA repair and cell proliferation. MANCR promotes metastasis as MANCR-depleted cells show reduced cell migration, invasion, and wound healing in vitro, and reduced metastatic lung colonization in xenograft experiments in vivo. Transcriptome analyses reveal that MANCR modulates expression and pre-mRNA splicing of genes, controlling DNA repair and checkpoint response. MANCR promotes the transcription of NET1A, a Rho-GEF that regulates DNA damage checkpoint and metastatic processes in cis, by differential promoter usage. Experiments suggest that MANCR regulates the expression of cancer-associated genes by modulating the association of various transcription factors and RNA-binding proteins. Our results identified the metastasis-promoting activities of MANCR in TNBC by cis-regulation of gene expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Animais , Feminino , Camundongos , Ciclo Celular/genética , Proliferação de Células/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Movimento Celular/genética , Reparo do DNA/genética
7.
Microbiol Spectr ; 12(10): e0082924, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39166862

RESUMO

The heterogeneous nuclear ribonucleoprotein (hnRNP A2B1) is a key component of the hnRNP complex involving RNA modulation in eukaryotic cells and it has also been reported to be involved in the replication of the hepatitis E virus, influenza A virus, and hepatitis B virus. However, it is not clear whether the role of the hnRNP A2B1 in viral replication is conserved among RNA viruses and what is the mechanism of hnRNP A2B1 in RNA virus replication. In this study, we first used severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne RNA virus that causes a severe viral hemorrhagic fever as well as other RNA viruses including VSV-GFP, SeV, EV71, and ZIKV to demonstrate that knockout hnRNPA2B1 gene inhibited viral RNA replication and overexpression of hnRNP A2B1 could restore the RNA levels of all tested RNA viruses. These results suggest that hnRNPA2B1 upregulation of viral replication is conserved among RNA viruses. Next, we demonstrated that hnRNP A2B1 was translocated from the nucleus to the cytoplasm under RNA virus infection including SFTSV, VSV-GFP, SeV, EV71, and ZIKV, suggesting translocation of hnRNP A2B1 from the nucleus to the cytoplasm is crucial for RNA virus replication. We then used SFTSV as a model to demonstrate the mechanism of hnRNP A2B1 in the promotion of RNA virus replication. We found that overexpression of SFTSV nucleoprotein can also cause hnRNP A2B1 translocation from the nucleus to the cytoplasm and that the SFTSV NP interacted with the RNA recognition motif 1 domain of hnRNP A2B1. We further demonstrated that the hnRNP A2B1 interacted with the 5' UTR of SFTSV RNA. In conclusion, we revealed that the hnRNP A2B1 upregulation of viral RNA replication is conserved among RNA viruses; the mechanism of hnRNP A2B1 in promotion of SFTSV viral RNA replication is that SFTSV NP interacted with the hnRNPA2B1 to retain it in the cytoplasm where the hnRNP A2B1 interacted with the 5' UTR of SFTSV RNA to promote the viral RNA replication.IMPORTANCESevere fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus with a high mortality rate of up to 30%. In this study, we first used SFTSV as a model to demonstrate that the role of hnRNPA2B1 in viral replication is conserved in SFTSV. Then we used other RNA viruses, including VSV-GFP, SeV, EV71, and ZIKV, to repeat the experiment and demonstrated the same results as SFTSV in all tested RNA viruses. By knocking out the hnRNPA2B1 gene, SFTSV RNA replication was inhibited, and overexpression of hnRNPA2B1 restored RNA levels of SFTSV and other tested RNA viruses. We revealed a novel mechanism where the SFTSV nucleoprotein interacts with hnRNPA2B1, retaining it in the cytoplasm. This interaction promotes viral RNA replication by binding to the 5' UTR of SFTSV RNA. The findings suggest that targeting hnRNPA2B1 could be a potential strategy for developing broad-spectrum antiviral therapies, given its conserved role across different RNA viruses. This research provides significant insights into the replication mechanisms of RNA viruses and highlights potential targets for antiviral interventions.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Phlebovirus , Vírus de RNA , RNA Viral , Replicação Viral , Animais , Humanos , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Phlebovirus/genética , Phlebovirus/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/genética , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Replicação Viral/genética , Camundongos
8.
Immunology ; 173(3): 425-441, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39111743

RESUMO

During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Imunidade Inata , Viroses , Humanos , Animais , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Viroses/imunologia , Replicação Viral , Camundongos , Interações Hospedeiro-Patógeno/imunologia
9.
Front Mol Neurosci ; 17: 1411639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086926

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.

10.
Viruses ; 16(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39205194

RESUMO

The hepatitis C virus (HCV) co-opts many cellular factors-including proteins and microRNAs-to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly.


Assuntos
Genoma Viral , Hepacivirus , RNA Viral , Proteínas de Ligação a RNA , Replicação Viral , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral , Biossíntese de Proteínas , Montagem de Vírus , Linhagem Celular , Hepatite C/virologia , Hepatite C/metabolismo
11.
Genetics ; 228(2)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39028799

RESUMO

RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fertilidade , Oócitos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fertilidade/genética , Oócitos/metabolismo , Oogênese/genética , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Edição de RNA , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/genética , Masculino
12.
J Mol Biol ; 436(18): 168702, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996909

RESUMO

The abundant nuclear protein hnRNP U interacts with a broad array of RNAs along with DNA and protein to regulate nuclear chromatin architecture. The RNA-binding activity is achieved via a disordered ∼100 residue C-terminal RNA-binding domain (RBD) containing two distinct RGG/RG motifs. Although the RNA-binding capabilities of RGG/RG motifs have been widely reported, less is known about hnRNP U's RNA-binding selectivity. Furthermore, while it is well established that hnRNP U binds numerous nuclear RNAs, it remains unknown whether it selectively recognizes sequence or structural motifs in target RNAs. To address this question, we performed equilibrium binding assays using fluorescence anisotropy (FA) and electrophoretic mobility shift assays (EMSAs) to quantitatively assess the ability of human hnRNP U RBD to interact with segments of cellular RNAs identified from eCLIP data. These RNAs often, but not exclusively, contain poly-uridine or 5'-AGGGAG sequence motifs. Detailed binding analysis of several target RNAs reveal that the hnRNP U RBD binds RNA in a promiscuous manner with high affinity for a broad range of structured RNAs, but with little preference for any distinct sequence motif. In contrast, the isolated RGG/RG of hnRNP U motif exhibits a strong preference for G-quadruplexes, similar to that observed for other RGG motif bearing peptides. These data reveal that the hnRNP U RBD attenuates the RNA binding selectivity of its core RGG motifs to achieve an extensive RNA interactome. We propose that a critical role of RGG/RG motifs in RNA biology is to alter binding affinity or selectivity of adjacent RNA-binding domains.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Ligação Proteica , RNA , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , RNA/metabolismo , RNA/química , RNA/genética , Motivos de Ligação ao RNA , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Polarização de Fluorescência , Motivos de Aminoácidos
13.
Cell Stress Chaperones ; 29(4): 615-625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969204

RESUMO

Cold-inducible RNA-binding protein (CIRP) is a versatile RNA-binding protein, pivotal in modulating cellular responses to diverse stress stimuli including cold shock, ultraviolet radiation, hypoxia, and infections, with a principal emphasis on cold stress. The temperature range of 32-34 °C is most suitable for CIRP expression. The human CIRP is an 18-21 kDa polypeptide containing 172 amino acids coded by a gene located on chromosome 19p13.3. CIRP has an RNA-recognition motif (RRM) and an arginine-rich motif (RGG), both of which have roles in coordinating numerous cellular activities. CIRP itself also undergoes conformational changes in response to diverse environmental stress. Transcription factors such as hypoxia-inducible factor 1 alpha and nuclear factor-kappa B have been implicated in coordinating CIRP transcription in response to specific stimuli. The potential of CIRP to relocate from the nucleus to the cytoplasm upon exposure to different stimuli enhances its varied functional roles across different cellular compartments. The different functions include decreasing nutritional demand, apoptosis suppression, modulation of translation, and preservation of cytoskeletal integrity at lower temperatures. This review explores the diverse functions and regulatory mechanisms of CIRP, shedding light on its involvement in various cellular processes and its implications for human health and disease.


Assuntos
Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Resposta ao Choque Frio/fisiologia , Temperatura Baixa
14.
Mol Biomed ; 5(1): 27, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009906

RESUMO

miRNA has emerged as a crucial regulator in various of pathological and physiological processes, yet its precise mechanism of action the detailed mechanism of their action in Head and neck squamous cell carcinoma (HNSCC) remains incompletely understood. This study sheds light on the role of mi-151-5p, revealing its significantly elevated expression in tumor cells, which notably enhances the invasion and migration of HNSCC cells. This effect is achieved through directly targeting LY6/PLAUR Domain Containing 3 (LYPD3) by miR-151-5p, involving complementary binding to the 3'-untranslated regions (3'-UTR) in the mRNA of LYPD3. Consequently, this interaction accelerates the metastasis of HNSCC. Notably, clinical observations indicate a correlation between high expression of miR-151-5p and low levels of LYPD3 in clinical settings are correlated with poor prognosis of HNSCC patients. Furthermore, our investigation demonstrates that glycosylation of LYPD3 modulates its subcellular localization and reinforces its role in suppressing HNSCC metastasis. Additionally, we uncover a potential regulatory mechanism involving the facilitation of miR-151-5p maturation and accumulation through N6-methyladenosine (m6A) modification. This process is orchestrated by methyltransferase-like 3 (METTL3) and mediated by a newly identified reader, heterogeneous nuclear ribonucleoprotein U (hnRNP U). These findings collectively underscore the significance of the METTL3/miR-151-5p/LYPD3 axis serves as a prominent driver in the malignant progression of HNSCC.


Assuntos
Adenosina , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , MicroRNAs , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Regiões 3' não Traduzidas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
15.
Immunobiology ; 229(5): 152835, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986278

RESUMO

Podocytes maintain renal filtration integrity when the glomerular filtration barrier (GFB) is integrated. Impairment or attrition of podocytes, leading to compromised GFB permeability, constitutes the primary etiology of proteinuria and is a hallmark pathological feature of diabetic nephropathy (DN). This study centers on Heterogeneous Nuclear Ribonucleoprotein I (HNRNP I), an RNA-binding protein, delineating its role in facilitating DN-induced renal damage by modulating podocyte health. Comparative analyses in renal biopsy specimens from DN patients and high-glucose-challenged podocyte models in vitro revealed a marked downregulation of HNRNP I expression relative to normal renal tissues and podocytes. In vitro assays demonstrated that high-glucose conditions precipitated a significant reduction in podocyte viability and an escalation in markers indicative of apoptosis. Conversely, HNRNP I overexpression was found to restore podocyte viability and attenuate apoptotic indices. IRAK1, a gene encoding a protein integral to inflammatory signaling, was shown to interact with HNRNP I, which promotes IRAK1 degradation. This interaction culminates in suppressing the PI3K/AKT/mTOR signaling pathway, thereby diminishing podocyte apoptosis and mitigating renal damage in DN. This investigation unveils the mechanistic role of HNRNP I in DN for the first time, potentially informing novel therapeutic strategies for DN renal impairment.


Assuntos
Apoptose , Nefropatias Diabéticas , Quinases Associadas a Receptores de Interleucina-1 , Podócitos , Transdução de Sinais , Podócitos/metabolismo , Podócitos/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Proteólise , Inflamação , Serina-Treonina Quinases TOR/metabolismo , Glucose/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética
16.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932230

RESUMO

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Assuntos
Infecções por HIV , HIV-1 , Imunidade Inata , Replicação Viral , HIV-1/genética , HIV-1/fisiologia , Humanos , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Regulação Viral da Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Interferons/metabolismo , Interferons/genética , Interferons/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
Emerg Microbes Infect ; 13(1): 2368221, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38932432

RESUMO

A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.


Assuntos
Enterovirus Humano A , Proteínas de Choque Térmico HSP27 , Ribonucleoproteína Nuclear Heterogênea A1 , Replicação Viral , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Enterovirus Humano A/genética , Fosforilação , Humanos , Replicação Viral/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Antivirais/farmacologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Serina/metabolismo , Células HeLa , Biossíntese de Proteínas , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Choque Térmico
18.
J Cell Biochem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720641

RESUMO

Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.

19.
EMBO Rep ; 25(6): 2662-2697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744970

RESUMO

The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.


Assuntos
Processamento Alternativo , Linfócitos B , Epigênese Genética , Ativação Linfocitária , Animais , Humanos , Camundongos , Apoptose/genética , Linfócitos B/metabolismo , Linfócitos B/imunologia , Proliferação de Células/genética , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histonas/metabolismo , Ativação Linfocitária/genética
20.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642725

RESUMO

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Carpas/imunologia , Carpas/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA