Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27936-27943, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743851

RESUMO

Copper oxide appears to be a promising candidate for a hole transport layer (HTL) in emerging perovskite solar cells. Reasons for this are its good optical and electrical properties, cost-effectiveness, and high stability. However, is this really the case? In this study, we demonstrate that copper oxide, synthesized by a spray-coating method, is unstable in contact with formamidinium lead triiodide (FAPI) perovskite, leading to its decomposition. Using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) spectrophotometry, we find that the entire copper oxide diffuses into and reacts with the FAPI film completely. The reaction products are an inactive yellow δ-FAPI phase, copper iodide (CuI), and an additional new phase of copper formate hydroxide (CH2CuO3) that has not been reported previously in the literature.

2.
Adv Mater ; 36(28): e2401537, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768481

RESUMO

In the fabrication of inverted perovskite solar cells (PSCs), the wettability, adsorbability, and compactness of self-assembled monolayers (SAMs) on conductive substrates have critical impacts on the quality of the perovskite films and the defects at the buried perovskite-substrate interface, which control the efficiency and stability of the devices. Herein, three bisphosphonate-anchored indolocarbazole (IDCz)-derived SAMs, IDCz-1, IDCz-2, and IDCz-3, are designed and synthesized by modulating the position of the two nitrogen atoms of the IDCz unit to improve the molecular dipole moments and strengthen the π-π interactions. Regulating the work functions (WF) of FTO electrodes through molecular dipole moments and energy levels, the perovskite band bends upwards with a small offset for ITO/IDCz-3/perovskite, thereby promoting hole extraction and blocking electrons. As a result, the inverted PSC employing IDCz-3 as hole-collecting layer exhibits a champion PCE of 25.15%, which is a record efficiency for the multipodal SAMs-based PSCs. Moreover, the unencapsulated device with IDCz-3 can be stored for at least 1800 h with little degradation in performance.

3.
Small ; 20(34): e2400915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597683

RESUMO

Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.

4.
Adv Mater ; 36(27): e2402325, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631673

RESUMO

Perovskite quantum dot-based light-emitting diodes (QLEDs) have been considered a promising display technology due to their wide color gamut for authentic color expression. Currently, the external quantum efficiency (EQE) for state-of-the-art blue perovskite QLEDs is about 15%, which still lags behind its green and red counterparts (>25%) and blue film-based LEDs. Here, blue perovskite QLEDs that achieve an EQE of 23.5% at 490 nm is presented, to the best knowledge, which is the highest value reported among blue perovskite-based LED fields. This impressive efficiency is achieved through a combination of quantum dot (QD) passivation and optimal device design. First, blue mixed halide perovskite CsPbCl3- xBrx QDs passivated by trifluoroacetate exhibit excellent exciton recombination behavior with a photoluminescence quantum yield of 84% due to reducing uncoordinated Pb surface defects. Furthermore, the device is designed by introducing a mixed hole-transport layer (M-HTL) to increase hole injection and transportation capacity and improve carrier balance. It is further found that M-HTL can decrease carrier leakage and increase radiative recombination in the device, evidenced by the visual electroluminescence spectrum at 2.0 V. The work breaks through the EQE gap of 20% for blue perovskite-based QLEDs and significantly promotes their commercialization process.

5.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276732

RESUMO

Perovskite solar cells (PSCs) have been significantly improved by utilizing an inorganic hole-transporting layer (HTL), such as nickel oxide. Despite the promising properties, there are still limitations due to defects. Recently, research on self-assembled monolayers (SAMs) is being actively conducted, which shows promise in reducing defects and enhancing device performance. In this study, we successfully engineered a p-i-n perovskite solar cell structure utilizing HC-A1 and HC-A4 molecules. These SAM molecules were found to enhance the grain morphology and uniformity of the perovskite film, which are critical factors in determining optical properties and device performance. Notably, HC-A4 demonstrated superior performance due to its distinct hydrophilic properties with a contact angle of 50.3°, attributable to its unique functional groups. Overall, the HC-A4-applied film exhibited efficient carrier extraction properties, attaining a carrier lifetime of 117.33 ns. Furthermore, HC-A4 contributed to superior device performance, achieving the highest device efficiency of 20% and demonstrating outstanding thermal stability over 300 h.

6.
Adv Mater ; 36(7): e2310630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029790

RESUMO

Nickel oxide (NiOx ) has garnered considerable attention as a prospective hole-transporting layer (HTL) in organic solar cells (OSCs), offering a potential solution to the stability challenges posed by traditional HTL, PEDOT:PSS, arising from acidity and hygroscopicity. Nevertheless, the lower work function (WF) of NiOx relative to donor polymers reduces charge injection efficiency in OSCs. Herein, NiOx nanoparticles are tailored through rare earth doping to optimize WF and the impact of ionic radius on their electronic properties is explored. Lanthanum (La3+ ) and yttrium (Y3+ ) ions, with larger ionic radii, are effectively doped at 1 and 3%, respectively, while scandium (Sc3+ ), with a smaller ion radius, allows enhanced 5% doping. Higher doping ratios significantly enhance WF of NiOx . A 5% Sc3+ doping raises WF to 4.99 eV from 4.77 eV for neat NiOx while maintaining high conductivity. Consequently, using 5% Sc-doped NiOx as HTL improves the power conversion efficiency (PCE) of OSCs to 17.13%, surpassing the 15.64% with the neat NiOx . Further enhancement to 18.42% is achieved by introducing the reductant catechol, outperforming the PEDOT:PSS-based devices. Additionally, when employed in a ternary blend system (D18:N3:F-BTA3), an impressive PCE of 19.18 % is realized, top-performing among reported OSCs utilizing solution-processed inorganic nanoparticles.

7.
ACS Appl Mater Interfaces ; 16(1): 1206-1216, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117238

RESUMO

A novel 9,9'-spirobifluorene derivative bearing thermally cross-linkable vinyl groups (V1382) was developed as a hole-transporting material for perovskite solar cells (PSCs). After thermal cross-linking, a smooth and solvent-resistant three-dimensional (3D) polymeric network is formed such that orthogonal solvents are no longer needed to process subsequent layers. Copolymerizing V1382 with 4,4'-thiobisbenzenethiol (dithiol) lowers the cross-linking temperature to 103 °C via the facile thiol-ene "click" reaction. The effectiveness of the cross-linked V1382/dithiol was demonstrated both as a hole-transporting material in p-i-n and as an interlayer between the perovskite and the hole-transporting layer in n-i-p PSC devices. Both devices exhibit better power conversion efficiencies and operational stability than devices using conventional PTAA or Spiro-OMeTAD hole-transporting materials.

8.
Micromachines (Basel) ; 14(8)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37630098

RESUMO

By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic lead-free CsSnI3-based halide perovskite offers the advantages of enhancing the stability and degradation resistance of devices, reducing the cost of devices, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) with Spiro-OMeTAD hole transporting layer (HTL) at perovskite thickness of 330 nm is in good agreement with the previous experimental result (12.96%). By changing the perovskite thickness and work operating temperature, the maximum efficiency of 18.15% is calculated for standard devices at a perovskite thickness of 800 nm. Then, the effects of replacement of Spiro-OMeTAD with other HTLs including Cu2O, CuI, CuSCN, CuSbS2, Cu2ZnSnSe4, CBTS, CuO, MoS2, MoOx, MoO3, PTAA, P3HT, and PEDOT:PSS on photovoltaic characteristics were calculated. The device with Cu2ZnSnSe4 hole transport in the same condition shows the highest efficiency of 21.63%. The back contact also changed by considering different metals such as Ag, Cu, Fe, C, Au, W, Ni, Pd, Pt, and Se. The outcomes provide valuable insights into the efficiency improvement of CsSnI3-based PSCs by Spiro-OMeTAD substitution with other HTLs, and back-contact modification upon the comprehensive analysis of 120 devices with different configurations.

9.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37059082

RESUMO

Organic solar cell (OSC) has drawn considerable interest in recent decades owing to their advantages of light weight, flexible, large area and potentially low-cost. Employing an appropriate hole-transporting layer (HTL) into an OSC device has been proved as an efficient method to obtain high efficiency OSC due to the enhancement of the hole transporting and extraction of the device. In this work, aqueous solution-processed MoO3(s-MoO3) thin films were employed as HTLs to construct non-fullerene PM6:Y6 OSCs. The s-MoO3thin film was prepared by using an aqueous solution process from an isopolymolybdate [NH4]6Mo7O24.4H2O precursor followed by thermal annealing treatment to convert the precursor to MoO3. The s-MoO3HTL based PM6:Y6 device demonstrates a power conversion efficiency of 15.75%, which is 38% improved than that of the device with thermally evaporated-MoO3as HTL and 8% improved than that of the device with PEDOT:PSS as HTL. The enhancement of the device performance could be attributed to the enhanced hole mobility and better band matching of the s-MoO3HTL. Moreover, the s-MoO3HTL based PM6:Y6 device exhibited higher device stability than those of the reference devices. Our finding indicates that this s-MoO3film has great potential as efficient HTL for high performance non fullerene OSCs.

10.
Sci Bull (Beijing) ; 67(3): 263-269, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546075

RESUMO

The use of organic hole transport layer (HTL) Spiro-OMeTAD in various solar cells imposes serious stability and cost problems, and thus calls for inorganic substitute materials. In this work, a novel inorganic MnS film prepared by thermal evaporation has been demonstrated to serve as a decent HTL in high-performance Sb2(S, Se)3 solar cells, providing a cost-effective all-inorganic solution. A low-temperature air-annealing process for the evaporated MnS layer was found to result in a significant positive effect on the power conversion efficiency (PCE) of Sb2(S, Se)3 solar cells, due to its better-matched energy band alignment after partial oxidation. Impressively, the device with the optimized MnS HTL has achieved an excellent PCE of about 9.24%, which is the highest efficiency among all-inorganic Sb2(S, Se)3 solar cells. Our result has revealed that MnS is a feasible substitute for organic HTL in Sb-based solar cells to achieve high PCE, low cost, and high stability.

11.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564176

RESUMO

Perovskite solar cells (PSCs) have achieved significantly high power-conversion efficiency within a short time. Most of the devices, including those with the highest efficiency, are based on a n-i-p structure utilizing a (doped) spiro-OMeTAD hole transport layer (HTL), which is an expensive material. Furthermore, doping has its own challenges affecting the processing and performance of the devices. Therefore, the need for low-cost, dopant-free hole transport materials is an urgent and critical issue for the commercialization of PSCs. In this study, n-i-p structure PSCs were fabricated in an ambient environment with cuprous iodide (CuI) HTL, employing a novel transfer-printing technique, in order to avoid the harmful interaction between the perovskite surface and the solvents of CuI. Moreover, in fabricated PSCs, the SnO2 electron transport layer (ETL) has been incorporated to reduce the processing temperature, as previously reported (n-i-p) devices with CuI HTL are based on TiO2, which is a high-temperature processed ETL. PSCs fabricated at 80 °C transfer-printing temperature with 20 nm iodized copper, under 1 sun illumination showed a promising efficiency of 8.3%, (JSC and FF; 19.3 A/cm2 and 53.8%), which is comparable with undoped spiro-OMeTAD PSCs and is the highest among the ambient-environment-fabricated PSCs utilizing CuI HTL.

12.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159788

RESUMO

Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.

13.
Polymers (Basel) ; 14(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35215629

RESUMO

The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunction solar cells have been deemed as promising sustainable future technologies, owing to the use of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emitters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different techniques used to synthesize these polymers are discussed in detail, including their electronic band structure and doping mechanisms. The general architecture and principle of operating heterojunction solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity, and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that results in total degradation of the polymeric p-type materials. Although great progress has been seen in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to go for cells incorporating polymeric materials to realize commercialization and large-scale industrial production due to the shortcomings in the stability of the polymers. This review therefore discusses the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon heterojunction solar cells with the intention to provide insight on the quest of producing highly efficient but less expensive solar cells.

14.
Heliyon ; 8(12): e11878, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590569

RESUMO

The remarkable optoelectronic capabilities of perovskite structures enable the achievement of astonishingly high-power conversion efficiencies on the laboratory scale. However, a critical bottleneck of perovskite solar cells is their sensitivity to the surrounding humid environment affecting drastically their long-term stability. Internal additive materials together with surface passivation, polymer-mixed perovskite, and quantum dots, have been investigated as possible strategies to enhance device stability even in unfavorable conditions. Quantum dots (QDs) in perovskite solar cells enable power conversion efficiencies to approach 20%, making such solar cells competitive to silicon-based ones. This mini-review summarized the role of such QDs in the perovskite layer, hole-transporting layer (HTL), and electron-transporting layer (ETL), demonstrating the continuous improvement of device efficiencies.

15.
Angew Chem Int Ed Engl ; 60(41): 22554-22561, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34418267

RESUMO

A robust hole transporting layer (HTL), using the cost-effective Cobalt(II) acetate tetrahydrate (Co(OAc)2 ⋅4 H2 O) as the precursor, was simply processed from its aqueous solution followed by thermal annealing (TA) and UV-ozone (UVO) treatments. The TA treatment induced the loss of crystal water followed by oxidization of Co(OAc)2 ⋅4 H2 O precursor, which increased the work function. However, TA treatment differently realize a high work function and ideal morphology for charge extraction. The resulting problems could be circumvented easily by additional UVO treatment, which also enhanced the conductivity and lowered the resistance for charge transport. The optimal condition was found to be a low temperature TA (150 °C) followed by simple UVO, where the crystal water in Co(OAc)2 ⋅4 H2 O was removed fully and the HTL surface was anchored by substantial hydroxy groups. Using PM6 as the polymer donor and L8-BO as the electron acceptor, a record high PCE of 18.77 % of the binary blend OSCs was achieved, higher than the common PEDOT:PSS-based solar cell devices (18.02 %).

16.
Small ; 17(37): e2101477, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34363331

RESUMO

An optimized charge transporting layer (CTL) under perovskite film is crucial for efficient photoelectric devices. Here, a new water-soluble conjugated polyeletrolyte (CPE) with CH3 NH3 + (MA+ ) counterion termed as TB(MA) is used as the hole transporting layer (HTL) instead of the acidic poly(3,4-ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS) in sky-blue perovskite light-emitting diodes (PeLEDs). The inherent hydrophilicity of CPE enables a well-growth of quasi-2D perovskite layer with uniform and compact morphology, enhanced crystallinity with rare defect density and excellent energy transfer, resulting in a high photoluminescence quantum yield (PLQY) up to 62.0%. Especially, the MA+ counterion is able to passivate the interfacial defects in the perovskite, which optimize the interfacial compatibility between HTL and perovskite film. Finally, efficient sky-blue PeLEDs, emitting at 488 nm, are fabricated with high external quantum efficiency (EQE) up to 13.5% by using CPE as HTL. In addition, due to the low-temperature processability of water-soluble CPE, an efficient flexible sky-blue PeLEDs based on PEN/ITO substrate is also obtained with high EQE of 8.3%. Using CPE as HTL is an effective strategy toward fabricating efficient blue PeLEDs.

17.
ACS Appl Mater Interfaces ; 13(30): 35595-35605, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286951

RESUMO

For enhancing the performance and long-term stability of perovskite solar cell (PSC) devices, interfacial engineering between the perovskite and hole-transporting material (HTM) is important. We developed a fluorinated conjugated polymer PFPT3 and used it as an interfacial layer between the perovskite and HTM layers in normal-type PSCs. Interaction of perovskite and PFPT3 via Pb-F bonding effectively induces an interfacial dipole moment, which resulted in energy-level bending; this was favorable for charge transfer and hole extraction at the interface. The PSC device achieved an increased efficiency of 22.00% with an open-circuit voltage of 1.13 V, short-circuit current density of 24.34 mA/cm2, and fill factor of 0.80 from a reverse scan and showed an averaged power conversion efficiency of 21.59%, which was averaged from forward and reverse scans. Furthermore, the device with PFPT3 showed much improved stability under an 85% RH condition because hydrophobic PFPT3 reduced water permeation into the perovskite layer, and more importantly, the enhanced contact adhesion at the PFPT3-mediated perovskite/HTM interface suppressed surface delamination and retarded water intrusion. The fluorinated conjugated polymeric interfacial material is effective for improving not only the efficiency but also the stability of the PSC devices.

18.
Angew Chem Int Ed Engl ; 60(30): 16388-16393, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34018292

RESUMO

Inorganic cesium lead halide perovskites offer a pathway towards thermally stable photovoltaics. However, moisture-induced phase degradation restricts the application of hole transport layers (HTLs) with hygroscopic dopants. Dopant-free HTLs fail to realize efficient photovoltaics due to severe electrical loss. Herein, we developed an electrical loss management strategy by manipulating poly(3-hexylthiophene) with a small molecule, i.e., SMe-TATPyr. The developed P3HT/SMe-TATPyr HTL shows a three-time increase of carrier mobility owing to breaking the long-range ordering of "edge-on" P3HT and inducing the formation of "face-on" clusters, over 50 % decrease of the perovskite surface defect density, and a reduced voltage loss at the perovskite/HTL interface because of favorable energy level alignment. The CsPbI2 Br perovskite solar cell demonstrates a record-high efficiency of 16.93 % for dopant-free HTL, and superior moisture and thermal stability by maintaining 96 % efficiency at low-humidity condition (10-25 % R. H.) for 1500 hours and over 95 % efficiency after annealing at 85 °C for 1000 hours.

19.
ACS Appl Mater Interfaces ; 13(14): 16744-16753, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818080

RESUMO

Conductive polyelectrolytes such as P3CT-Na have been widely used as efficient hole-transporting layers (HTLs) in inverted perovskite solar cells (PSCs) due to their high hole mobility. However, the acid-base neutralization reaction is indispensable for preparing such polyelectrolytes and the varied content of cations usually leads to poor reproducibility of the device performance in PSCs. In this work, a commercially available polymer poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CT) was directly applied as an HTL in PSCs for the first time. Encouragingly, it was found that due to the dual functionality of carboxyl groups on side chains, a thin layer of P3CT can not only strongly anchor on ITO electrode and optimize its work function but also show an effective passivation effect toward perovskite active layer. Benefiting from such dual functionality, a uniform perovskite film with better quality was obtained on P3CT. As a result, the P3CT-based PSCs show much lower nonradiative recombination and achieve a champion power conversion efficiency (PCE) of 21.33% with a high fill factor (FF) of 83.6%. Impressively, as the device area is increased to 0.80 cm2, a PCE of 19.65% can still be obtained for the PSCs based on P3CT HTL. Our work provides important strategy for developing HTLs for high-performance PSCs.

20.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802779

RESUMO

Perovskite quantum dots (PQDs) have drawn global attention in recent years and have been used in a range of semiconductor devices, especially for light-emitting diodes (LEDs). However, because of the nature of low-conductive ligands of PQDs and surface and bulk defects in the devices, charge injection and transport should be carefully managed in order to maximize the electroluminescent performances. In this study, we employed three p-dopants, i.e., 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), 1,3,4,5,7,8-hexafluoro-11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (F6-TCNNQ), and 11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (TCNH14), respectively doped into the commonly used hole transporting layer (HTL) poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Compared with the devices with the neat PTAA, those with the doped PTAA as the HTLs achieved the improved electroluminescent performances. In particular, the device with the strong oxidant F4-TCNQ exhibited an improvement factor of 27% in the peak external quantum efficiency compared with the control device with the neat PTAA. The capacitance and transient electroluminescent measurements were carried out to identify the imperceptible interactions in the doped HTL and at the interface between the HTL and PQDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA