Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Ecol ; 20(1): 12, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070331

RESUMO

BACKGROUND: Glucocorticoids mediate responses to perceived stressors, thereby restoring homeostasis. However, prolonged glucocorticoid elevation may cause homeostatic overload. Using extensive field investigations of banded mongoose (Mungos mungo) groups in northern Botswana, we assessed the influence of reproduction, predation risk, and food limitation on apparent homeostatic overload (n=13 groups, 1542 samples from 268 animals). We experimentally manipulated reproduction and regulated food supply in captive mongooses, and compared their glucocorticoid responses to those obtained from free-living groups. RESULTS: At the population level, variation in glucocorticoid levels in free-living mongooses was explained by food limitation: fecal organic matter, recent rainfall, and access to concentrated anthropogenic food resources. Soil macrofauna density and reproductive events explained less and predation risk very little variation in glucocorticoid levels. Reproduction and its associated challenges alone (under regulated feeding conditions) increased glucocorticoid levels 19-fold in a captive group. Among free-living groups, glucocorticoid elevation was seasonal (occurring in late dry season or early wet season when natural food resources were less available), but the timing of peak glucocorticoid production was moderated by access to anthropogenic resources (groups with fewer anthropogenic food sources had peaks earlier in dry seasons). Peak months represented 12- and 16-fold increases in glucocorticoids relative to nadir months with some animals exhibiting 100-fold increases. Relative to the captive group nadir, some free-living groups exhibited 60-fold increases in peak glucocorticoid levels with some animals exhibiting up to 800-fold increases. Most of these animals exhibited 1- to 10-fold increases relative to the captive animal peak. CONCLUSIONS: Banded mongooses exhibit seasonal chronic glucocorticoid elevation, associated primarily with food limitation and secondarily with reproduction. Magnitude and duration of this elevation suggests that this may be maladaptive for some animals, with possible fitness consequences. In late dry season, this population may face a convergence of stressors (food limitation, agonistic encounters at concentrated food resources, evictions, estrus, mate competition, parturition, and predation pressure on pups), which may induce homeostatic overload.


Assuntos
Herpestidae , Animais , Fezes , Feminino , Glucocorticoides , Reprodução , Estações do Ano
2.
Artigo em Inglês | MEDLINE | ID: mdl-30099116

RESUMO

The hypothalamic-pituitary-interrenal (HPI) axis is centrally implicated in stressor mitigation in teleost fishes. Sustained HPI axis activation can be detrimental to the physiological functioning of an organism and can result in fitness-related trade-offs. Predator-induced mortality is known to be higher in stressed fish than in unstressed conspecifics, suggesting a role for the HPI axis in mediating fish behaviour. However, the underlying specific mechanism(s) for this phenomenon is(are) unknown. The purpose of the current study was to address how the HPI axis influences risk-taking, and antipredator behaviours in a wild teleost, the pumpkinseed sunfish (Lepomis gibbosus). Here, individual juvenile pumpkinseed were implanted either with cocoa butter as a sham control or with a biologically-relevant concentration of cortisol. Forty-eight hours post-implantation, fish were assessed for behavioural metrics associated with boldness and risk taking in three sequential behavioural tests: (i) a predation-risk test, (ii) an exploration tendency test, and (iii) a shoaling tendency test, with test order randomized among different trials. Cortisol treatment had no influence on antipredator, exploratory, or shoaling behaviours. However, post-attack swimming duration (in predation-risk test) and exploratory activity (in Z-maze exploration test) were significantly affected by body mass. Collectively, our results indicate that cortisol may not have a role in mediating sociability, boldness, and risk-taking behaviours in pumpkinseed sunfish, at least under the current laboratory conditions. However, cortisol may nonetheless play a role in mediating predator-prey interactions in fishes in more natural environmental settings that were not considered here.


Assuntos
Peixes/fisiologia , Hidrocortisona/sangue , Comportamento Predatório , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Estresse Fisiológico
3.
Integr Zool ; 13(2): 206-218, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29078038

RESUMO

The stress axis in teleost fish attempts to maintain internal homeostasis in the face of allostatic loading. However, stress axis induction has been associated with a higher predation rate in fish. To date, the physiological and behavioral factors associated with this outcome are poorly understood. The purpose of the present study was to investigate the impact of experimental cortisol elevation on anti-predator behavior and physiological responses to predator presence. We hypothesized that semi-chronic cortisol elevation would increase susceptibility to predation by increasing stress-induced risk-taking behaviors. To test this hypothesis, schoolmaster snapper were given cocoa butter implants without cortisol (sham) or with cortisol (50 mg/kg body weight) and tethered to cover. Fish were exposed to either a lemon shark or control conditions for 15-min. Space use and activity were recorded throughout and fish were terminally sampled for blood. Cortisol implantation, relative to shams, resulted in higher blood glucose and plasma cortisol concentrations with a lower plasma lactate concentration. Shark exposure, relative to controls, elicited higher blood glucose and lactate concentrations but had no effect on plasma cortisol concentration. No interactions were detected between shark exposure and cortisol treatment for any physiological trait. Behavioral metrics, including shelter use and activity, were unaffected by either cortisol implantation or shark exposure. Physiological responses to cortisol implantation likely resulted from enhanced gluconeogenic activity, whereas alterations under predator exposure may have been the product of catecholamine mobilization. Further work should address context-specific influences of stress in mediating behavioral responses to predation.


Assuntos
Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Peixes/fisiologia , Hidrocortisona/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Organismos Aquáticos , Aprendizagem da Esquiva
4.
Artigo em Inglês | MEDLINE | ID: mdl-28185867

RESUMO

The hypothalamic-pituitary-interrenal (HPI) axis, through corticosteroid secretion, is an integral mechanism regulating internal homeostasis when vertebrates are faced with a stressor. However, continued HPI-axis stimulation can produce homeostatic overload, where corticosteroids are detrimental to organismal function. This overload condition may play an important role in mediating predator-prey interactions, because chronically/previously stressed animals may have higher rates of predator-induced mortality. However, the mechanism(s) underlying this observation are unknown. Using fish as models, we hypothesized that chronic stress would increase predation susceptibility owing to a poor physiological state (e.g. homeostatic overload) with corresponding sub-optimal changes in predator-avoidance behaviour. As cortisol is also required in low quantities to help regulate basic metabolic functions in fish, we expected that a glucocorticoid receptor antagonist (GR; e.g. homeostatic failure) may produce similar effects. Schoolmaster snapper (Lutjanus apodus) were given intraperitoneal implants of cocoa butter impregnated with nothing (sham; 5ml/kg body weight (BW)), cortisol (50mg/kg BW) or the GR antagonist RU486 (100mg/kg BW). At 24-h post-implantation, fish were tethered to the seafloor and observed for behavioural metrics associated with predation. Blood samples were collected from a subset of fish to assess the physiological consequences of the implants. Cortisol- and RU486-implanted fish both had significantly higher plasma cortisol concentrations than sham fish, with blood glucose and plasma urea being elevated only in the former. Further, anti-predator behaviours and predation mortality did not differ significantly among treatments. Despite changes in physiological state, predation susceptibility was unaffected, a finding that may reflect the complex relationships linking the physiology and behaviour of an organism as well as potential tethering artefacts.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Perciformes/fisiologia , Comportamento Predatório/fisiologia , Animais , Hidrocortisona/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Mifepristona/farmacologia , Comportamento Predatório/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA