Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39456976

RESUMO

The inflammatory cytokine response is essential for protective immunity, yet bacterial and viral pathogens often elicit an exaggerated response ("cytokine storm") harmful to the host that can cause multi-organ damage and lethality. Much has been published recently on the cytokine storm within the context of the coronavirus pandemic, yet bacterial sepsis, severe wound infections and toxic shock provide other prominent examples. The problem of the cytokine storm is compounded by the increasing incidence of multidrug-resistant bacterial strains. We created an incisive molecular tool for analyzing the role of the B7/CD28 costimulatory axis in the human inflammatory response. To attenuate the cytokine storm underlying infection pathology, yet preserve host defenses, we uniquely targeted the engagement of CD28 with its B7 co-ligands by means of short peptide mimetics of the human CD28 and B7 receptor homodimer interfaces. These peptides are not only effective tools for dissecting mechanism but also serve to attenuate the inflammatory response as a broad host-oriented therapeutic strategy against the cytokine storm. Indeed, such peptides protect mice from lethal Gram-positive bacterial superantigen-induced toxic shock even when dosed in molar amounts well below that of the superantigen and show promise in protecting humans from the severe inflammatory disease necrotizing soft tissue infections ('flesh-eating' bacterial sepsis) following traumatic wound injuries.


Assuntos
Síndrome da Liberação de Citocina , Humanos , Animais , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/etiologia , Citocinas/metabolismo , Camundongos , Inflamação/imunologia , Choque Séptico/imunologia , Superantígenos/imunologia , Peptídeos/imunologia , Peptídeos/química , COVID-19/imunologia
2.
Biotechnol Prog ; : e3515, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39410750

RESUMO

Bispecific antibodies (bsAbs) can simultaneously bind two different antigens or epitopes. Their dual-targeting capability enables novel mechanisms of action, gaining therapeutic advantages over conventional monospecific mAbs. In recent years, the number of bsAbs grows rapidly and bsAbs under development are available in diverse formats. In particular, Fc-containing IgG-like bsAbs, which represent the major group, can be constructed in asymmetric or symmetric format. For asymmetric ones, whose assembly requires multiple distinct chains, although numerous strategies have been developed to promote desired chain pairing, product-related variants such as free chains, half molecules and mispaired species are usually present at various levels. For symmetric ones, increased level of aggregates and truncating variants is often associated with their production. In general, bsAbs pose greater challenges to the downstream team than regular mAbs. In the past few years, our team successfully developed the downstream process for over 70 bsAbs in greater than 30 different formats and accumulated substantial experience. This review introduces general strategies that we have used while purifying these challenging molecules.

3.
Structure ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383875

RESUMO

ß-carotene (BCR) is the most abundant carotenoid, a colorant, antioxidant, and provitamin A. The extreme hydrophobicity of this hydrocarbon requires special mechanisms for distribution in aqueous media, including water-soluble carotenoproteins. However, all known carotenoproteins prefer oxygenated carotenoids and bind BCR inefficiently. Here, we present the crystal structure of the BCR-binding protein (BBP) from gregarious male locusts, which is responsible for their vivid yellow body coloration, in complex with its natural ligand, BCR. BBP forms an antiparallel tubular homodimer with α/ß-wrap folded monomers, each forming a hydrophobic 47 Å long, coaxial tunnel that opens outward and is occupied by one s-cisC6-C7, all-trans BCR molecule. In the BCR absence, BBP accepts a range of xanthophylls, with reduced efficiency depending on the position and number of oxygen atoms, but rejects lycopene. The structure captures a pigment complex with a Takeout 1 protein and inspires potential applications of BBP as a BCR solubilizer.

4.
Chemistry ; : e202403420, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308393

RESUMO

Applying electricity as a reagent in synthetic organic chemistry has attracted particular attention from synthetic chemists worldwide as an environmentally benign and cost-effective technique. Herein, we report the construction of the Csp2-Csp2 linkage at the C5-C5' position of 2-oxindole utilizing electricity as the traceless oxidant in an anodic dehydrogenative homo-coupling process. A variety of 3,3-disubstituted-2-oxindoles were subjected to dimerization, achieving yields of up to 70% through controlled potential electrolysis at an applied potential of 1.5 V versus Ag/Ag+ nonaqueous reference electrode. This electro-synthetic approach facilitates the specific assembly of C5-C5' (para-para coupled) dimer of 3,3-disubstituted-2-oxindole without the necessity of any external oxidants or additives and DFT (Density Functional Theory) calculations provided confirmation of this pronounced regioselectivity. Furthermore, validation through control experiments and voltammetric analyses substantiated the manifestation of radical-radical coupling (or biradical pathway) for the dimerization process.

5.
Biomolecules ; 14(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39334924

RESUMO

The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid ß-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.


Assuntos
Carnitina , Multimerização Proteica , Humanos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/química , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Proteínas de Membrana Transportadoras
6.
Mol Neurobiol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042220

RESUMO

Vascular dementia (VD), a progressive vascular cognitive impairment, is characterised by the presence of cerebral hypoperfusion, increased blood-brain barrier permeability, and white matter lesions. Although current treatment strategies primarily focus on risk factors such as hypertension, diabetes, and heart disease, efficient and targeted therapies are lacking and the underlying mechanisms of VD remain unclear. We previously discovered that Apelin receptors (APJ), which are G protein-coupled receptors (GPCRs), can homodimerize and generate signals that are distinct from those of APJ monomers in VD rats. Apelin-13 reduces the level of APJ homodimers and leads to the proliferation of endogenous neural stem cells in the hippocampal dentate gyrus area, suggesting that it has a neuroprotective role. In this study, we established a rat and cellular oxygen-glucose deprivation/reoxygenation VD model to investigate the impact of APJ homodimerisation on autophagy. We found that APJ homodimers protect against VD by inhibiting autophagy through the Gαq and PI3K/Akt/mTOR pathways upon Gαi signalling, both in vivo and in vitro. This discovery provides a promising therapeutic target for chronic cerebral ischaemia-reperfusion diseases and an experimental foundation for the development of drugs that target APJ homodimers.

7.
Protein Sci ; 33(7): e5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38895984

RESUMO

Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.


Assuntos
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , NAD/metabolismo , Domínios Proteicos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cristalografia por Raios X , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Evolução Molecular , Modelos Moleculares , Filogenia , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética
8.
Protein Sci ; 33(6): e5020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747397

RESUMO

Wheat germ agglutinin (WGA) demonstrates potential as an oral delivery agent owing to its selective binding to carbohydrates and its capacity to traverse biological membranes. In this study, we employed differential scanning calorimetry and molecular dynamics simulations to comprehensively characterize the thermal unfolding process of both the complete lectin and its four isolated domains. Furthermore, we present the nuclear magnetic resonance structures of three domains that were previously lacking experimental structures in their isolated forms. Our results provide a collective understanding of the energetic and structural factors governing the intricate unfolding mechanism of the complete agglutinin, shedding light on the specific role played by each domain in this process. The analysis revealed negligible interdomain cooperativity, highlighting instead significant coupling between dimer dissociation and the unfolding of the more labile domains. By comparing the dominant interactions, we rationalized the stability differences among the domains. Understanding the structural stability of WGA opens avenues for enhanced drug delivery strategies, underscoring its potential as a promising carrier throughout the gastrointestinal environment.


Assuntos
Estabilidade Proteica , Aglutininas do Germe de Trigo , Varredura Diferencial de Calorimetria , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Aglutininas do Germe de Trigo/química
9.
Protein Sci ; 33(6): e5002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723146

RESUMO

Bacteria that have acquired resistance to most antibiotics, particularly those causing nosocomial infections, create serious problems. Among these, the emergence of vancomycin-resistant enterococci was a tremendous shock, considering that vancomycin is the last resort for controlling methicillin-resistant Staphylococcus aureus. Therefore, there is an urgent need to develop an inhibitor of VanX, a protein involved in vancomycin resistance. Although the crystal structure of VanX has been resolved, its asymmetric unit contains six molecules aligned in a row. We have developed a structural model of VanX as a stable dimer in solution, primarily utilizing nuclear magnetic resonance (NMR) residual dipolar coupling. Despite the 46 kDa molecular mass of the dimer, the analyses, which are typically not as straightforward as those of small proteins around 10 kDa, were successfully conducted. We assigned the main chain using an amino acid-selective unlabeling method. Because we found that the zinc ion-coordinating active sites in the dimer structure were situated in the opposite direction to the dimer interface, we generated an active monomer by replacing an amino acid at the dimer interface. The monomer consists of only 202 amino acids and is expected to be used in future studies to screen and improve inhibitors using NMR.


Assuntos
Proteínas de Bactérias , Multimerização Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico , Metaloendopeptidases/química , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Resistência a Vancomicina/genética , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/metabolismo
10.
J Biochem ; 176(1): 69-80, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471515

RESUMO

Schistosoma japonicum glutathione-S-transferase (SjGST), the so-called GST-tag, is one of the most widely used protein tags for the purification of recombinant proteins by affinity chromatography. Attachment of SjGST enables the purification of a protein of interest (POI) using commercially available glutathione-immobilizing resins. Here we produced an SjGST mutant pair that forms heterodimers by adjusting the salt bridge pairs in the homodimer interface of SjGST. An MD study confirmed that the SjGST mutant pair did not disrupt the heterodimer formation. The modified SjGST protein pair coexpressed in Escherichia coli was purified by glutathione-immobilized resin. The stability of the heterodimeric form of the SjGST mutant pair was further confirmed by size exclusion chromatography. Surface plasmon resonance measurements unveiled the selective formation of heterodimers within the pair, accompanied by a significant suppression of homodimerization. The heterodimeric SjGST exhibited enzymatic activity in assays employing a commercially available fluorescent substrate. By fusing one member of the heterodimeric SjGST pair with a fluorescent protein and the other with the POI, we were able to conveniently and sensitively detect protein-protein interactions using fluorescence spectroscopy in the pull-down assays. Thus, utilization of the heterodimeric SjGST would be a useful tag for protein science.


Assuntos
Cromatografia de Afinidade , Glutationa Transferase , Schistosoma japonicum , Schistosoma japonicum/enzimologia , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Glutationa Transferase/isolamento & purificação , Glutationa Transferase/genética , Animais , Cromatografia de Afinidade/métodos , Multimerização Proteica , Proteínas de Helminto/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Modelos Moleculares
11.
J Forensic Sci ; 69(3): 1094-1101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491758

RESUMO

The aim of the present study was to investigate the effects of time, temperature, and burial in a natural environment on the viability of chondrocytes in porcine femoral condyles using confocal laser scanning microscopy. Hind trotters from 10 pigs were buried or left unburied. Samples were collected daily and stained with a combination of vital dyes (calcein-AM and ethidium homodimer-1). The chondrocytes showed an intense staining corresponding to their vitality. In the first 3 days, viability decreased slowly and showed no statistical difference between buried and unburied samples. After the first 3 days, it decreased rapidly, with the viability of the buried samples being 66% on day 4, decreasing to 25% on day 8 and to 16% on day 10, while in the unburied samples it decreased to 43% on day 4, 13% on day 8 and 5% on day 10. Our results indicate a time, temperature, and burial dependent decrease in chondrocyte viability and suggest the use of chondrocyte viability as a marker for estimating PMI in both the natural environment and in animals, as well as its potential use in humans.


Assuntos
Sepultamento , Cartilagem Articular , Sobrevivência Celular , Condrócitos , Microscopia Confocal , Mudanças Depois da Morte , Temperatura , Animais , Condrócitos/citologia , Cartilagem Articular/citologia , Suínos , Fatores de Tempo , Estações do Ano , Patologia Legal , Corantes Fluorescentes , Fêmur/citologia
12.
Front Pharmacol ; 15: 1335246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510657

RESUMO

Background: Acinar ductal metaplasia (ADM) is among the earliest initiating events in pancreatic ductal adenocarcinoma (PDAC) development. Methods: We developed a novel morphology-based screen using organoids from wildtype and p48Cre/+ (Cre) mice to discover epigenetic modulators that inhibit or reverse pancreatic ADM more effectively than the broad-spectrum HDAC inhibitor trichostatin A (TSA). Results: Of the 144 compounds screened, nine hits and two additional natural product HDAC inhibitors were validated by dose-response analysis. The class I HDAC inhibitors apicidin and FK228, and the histone methyltransferase inhibitor chaetocin demonstrated pronounced ADM inhibition and reversal without inducing significant cytotoxicity at 1 µM. Thioester prodrug class I HDAC inhibitor largazole attenuated ADM while its disulfide homodimer was effective in both ADM inhibition and reversal. Prioritized compounds were validated for ADM reversal in p48Cre/+; LSL-KrasG12D/+ (KC) mouse organoids using both morphological and molecular endpoints. Molecular index analysis of ADM reversal in KC mouse organoids demonstrated improved activity compared to TSA. Improved prodrug stability translated into a stronger phenotypic and molecular response. RNA-sequencing indicated that angiotensinogen was the top inhibited pathway during ADM reversal. Conclusion: Our findings demonstrate a unique epigenetic mechanism and suggest that the phenotypic screen developed here may be applied to discover potential treatments for PDAC.

13.
BMC Cancer ; 24(1): 346, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500100

RESUMO

BACKGROUND: The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS: Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS: Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS: We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.


Assuntos
Luciferases , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Células HEK293 , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-38305404

RESUMO

BACKGROUND: v-RAF murine sarcoma viral homolog B1 (BRAF) is one of the most frequently mutated kinases in human cancers. BRAF exhibits three classes of mutations: Class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). METHOD: In this manuscript, the protein-ligand interaction site of all three mutants: BRAF monomer, BRAF homodimer BRAF2:14-3-32, and BRAF heterodimer BRAF:14-3-32:MEK (Mitogen extracellular Kinase) has been discussed. FDA-approved drugs still have limitations against all three classes of mutants, especially against the second and third classes. Using the DesPot grid model, 1114 new compounds were designed. Using virtual screening, the three PDB Ids 4XV2 for monomers, 7MFF for homodimers, and 4MNE for heterodimers were used for 1114 newly designed compounds. RESULT: Dabrafenib, encorafenib, sorafenib and vemurafenib were included as standard drugs. The top 10 hit molecules were identified for each protein. Additional binding studies were performed using molecular docking studies on the protein-ligand site of each PDB identifier. Absorption, distribution, metabolism, excretion (ADME) and toxicity studies were also performed. CONCLUSION: It was identified that top-hit molecules had better binding and interaction activity than standard in all three classes of mutants.

15.
FEBS J ; 291(2): 237-255, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450366

RESUMO

Zinc Finger DNA-binding domain-containing proteins are the most populous family among eukaryotic transcription factors. Among these, members of the BTB domain-containing ZBTB sub-family are mostly known for their transcriptional repressive functions. In this Viewpoint article, we explore molecular mechanisms that potentially diversify the function of ZBTB proteins based on their homo and heterodimerization, alternative splicing and post-translational modifications. We describe how the BTB domain is as much a scaffold for the assembly of co-repressors, as a domain that regulates protein stability. We highlight another mechanism that regulates ZBTB protein stability: phosphorylation in the zinc finger domain. We explore the non-transcriptional, structural roles of ZBTB proteins and highlight novel findings that describe the ability of ZBTB proteins to associate with poly adenosine ribose in the nucleus during the DNA damage response. Herein, we discuss the contribution of BTB domain scaffolds to the formation of transcriptional repressive complexes, to chromosome compartmentalization and their non-transcriptional, purely structural functions in the nucleus.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Dedos de Zinco , Ligação Proteica
16.
FEBS J ; 291(1): 177-203, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786987

RESUMO

Invasion of brain endothelium protein A (IbeA) is a virulence factor specific to pathogenic Escherichia coli. Originally identified in the K1 strain causing neonatal meningitis, it was more recently found in avian pathogenic Escherichia coli (APEC) and adherent invasive Escherichia coli (AIEC). In these bacteria, IbeA facilitates host cell invasion and intracellular survival, in particular, under harsh conditions like oxidative stress. Furthermore, IbeA from AIEC contributes to intramacrophage survival and replication, thus enhancing the inflammatory response within the intestine. Therefore, this factor is a promising drug target for anti-AIEC strategies in the context of Crohn's disease. Despite such an important role, the biological function of IbeA remains largely unknown. In particular, its exact nature and cellular localization, i.e., membrane-bound invasin versus cytosolic factor, are still of debate. Here, we developed an efficient protocol for recombinant expression of IbeA under native conditions and demonstrated that IbeA from AIEC is a soluble, homodimeric flavoprotein. Using mass spectrometry and tryptophan fluorescence measurements, we further showed that IbeA preferentially binds flavin adenine dinucleotide (FAD), with an affinity in the one-hundred nanomolar range and optimal binding under reducing conditions. 3D-modeling with AlphaFold revealed that IbeA shares strong structural homology with FAD-dependent oxidoreductases. Finally, we used ligand docking, mutational analyses, and molecular dynamics simulations to identify the FAD binding pocket within IbeA and characterize possible conformational changes occurring upon ligand binding. Overall, we suggest that the role of IbeA in the survival of AIEC within host cells, notably macrophages, is linked to modulation of redox processes.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/metabolismo , Oxirredutases/metabolismo , Ligantes , Escherichia coli/genética , Escherichia coli/metabolismo , Encéfalo/metabolismo , Endotélio/metabolismo , Aderência Bacteriana
17.
Protein Sci ; 33(1): e4857, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058248

RESUMO

The 3C-like protease (3CLpro ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CLpro only functions as a homodimer, making the protein-protein interface an attractive drug target. Dimerization is partly mediated by a conserved glycine at position 11. However, some naturally occurring SARS-CoV-2 sequences contain a serine at this position, potentially disrupting the dimer. We have used concentration-dependent activity assays and mass spectrometry to show that indeed the G11S mutation reduces the stability of the dimer by 600-fold. This helps to set a quantitative benchmark for the minimum potency required of any future protein-protein interaction inhibitors targeting 3CLpro and raises interesting questions regarding how coronaviruses bearing such weakly dimerizing 3CLpro enzymes are capable of replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Peptídeo Hidrolases/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Mutação , Antivirais/química
18.
Chemistry ; 30(2): e202302937, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37939246

RESUMO

This study presents an efficient method for on-resin dimer generation through self-condensation of 3,3-dimethoxypropionic acid-modified molecules, resulting in 2-pyridones. The approach demonstrated remarkable versatility by producing homodimers of peptides, peptoids, and non-peptidic ligands. Its ease of application, broad utility, and mild reaction conditions not only hold significance for peptide and peptoid research but also offer potential for the on-resin development of a wide range of bivalent ligands.


Assuntos
Peptoides , Técnicas de Síntese em Fase Sólida , Técnicas de Síntese em Fase Sólida/métodos , Peptídeos/química , Peptoides/química , Piridonas , Ligantes
19.
Biomolecules ; 13(12)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38136580

RESUMO

Protein homodimers have been classified as three-state or two-state dimers depending on whether a folded monomer forms before association, but the details of the folding-binding mechanisms are poorly understood. Kinetic transition networks of conformational states have provided insight into the folding mechanisms of monomeric proteins, but extending such a network to two protein chains is challenging as all the relative positions and orientations of the chains need to be included, greatly increasing the number of degrees of freedom. Here, we present a simplification of the problem by grouping all states of the two chains into two layers: a dissociated and an associated layer. We combined our two-layer approach with the Wako-Saito-Muñoz-Eaton method and used Transition Path Theory to investigate the dimer formation kinetics of eight homodimers. The analysis reveals a remarkable diversity of dimer formation mechanisms. Induced folding, conformational selection, and rigid docking are often simultaneously at work, and their contribution depends on the protein concentration. Pre-folded structural elements are always present at the moment of association, and asymmetric binding mechanisms are common. Our two-layer network approach can be combined with various methods that generate discrete states, yielding new insights into the kinetics and pathways of flexible binding processes.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Conformação Molecular , Biossíntese de Proteínas , Cinética , Termodinâmica
20.
Cancers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136341

RESUMO

Pancreatic cancer is a highly aggressive cancer with a high mortality rate and limited treatment options. It is the fourth leading cause of cancer in the US, and mortality is rising rapidly, with a 12% relative 5-year survival rate. Early diagnosis remains a challenge due to vague symptoms, lack of specific biomarkers, and rapid tumor progression. Interleukin-12 (IL-12) is a central cytokine that regulates innate (natural killer cells) and adaptive (cytokine T-lymphocytes) immunity in cancer. We demonstrated that serum levels of IL-12p40 homodimer (p402) and p40 monomer (p40) were elevated and that of IL-12 and IL-23 were lowered in pancreatic cancer patients compared to healthy controls. Comparably, human PDAC cells produced greater levels of p402 and p40 and lower levels of IL-12 and IL-23 compared to normal pancreatic cells. Notably, neutralization of p402 by mAb a3-1d and p40 by mAb a3-3a induced the death of human PDAC cells, but not normal human pancreatic cells. Furthermore, we demonstrated that treatment of PDX mice with p402 mAb and p40 mAb resulted in apoptosis and tumor shrinkage. This study illustrates a new role of p402 and p40 monomer in pancreatic cancer, highlighting possible approaches against this deadly form of cancer with p402 and p40 monomer immunotherapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA