RESUMO
The synthesis and structural analysis of (Me3SiC5H4)TiCl2(OAr) [OAr = O-2,6-iPr2-4-RC6H2; R = H, SiEt3] revealed that it exhibits higher catalytic activities than (tBuC5H4)TiCl2(OAr), Cp*TiCl2(OAr), with efficient comonomer incorporation in ethylene/styrene copolymerization in the presence of a methylaluminoxane (MAO) cocatalyst. The catalytic activity in the copolymerization increased upon increasing the charged styrene concentration along with the increase in the styrene content in the copolymers, whereas the activities of other catalysts showed the opposite trend. (Me3SiC5H4)TiCl2(O-2,6-iPr2C6H3) displayed the most suitable catalyst performance in terms of its activity and styrene incorporation, affording amorphous copolymers with styrene contents higher than 50 mol% (up to 63.6 mol%) and with random styrene incorporation confirmed by 13C-NMR spectra.
RESUMO
Lithium-sulfur (Li-S) batteries suffer from severe polysulfide shuttle, retarded sulfur conversion kinetics and notorious lithium dendrites, which has curtailed the discharge capacity, cycling lifespan and safety. Engineered catalysts act as a feasible strategy to synchronously manipulate the evolution behaviors of sulfur and lithium species. Herein, a chlorine bridge-enabled binuclear copper complex (Cu-2-T) is in situ synthesized in electrolyte as homogeneous catalyst for rationalizing the Li-S redox reactions. The well-designed Cu-2-T provides completely active sites and sufficient contact for homogeneously guiding the Li2S nucleation/decomposition reactions, and stabilizing the lithium working interface according to the synchrotron radiation X-ray 3D nano-computed tomography, small angle neutron scattering and COMSOL results. Moreover, Cu-2-T with the content of 0.25 wt% approaching saturated concentration in electrolyte further boosts the homogeneous optimization function in really operated Li-S batteries. Accordingly, the capacity retention of the Li-S battery is elevated from 51.4% to 86.3% at 0.2 C, and reaches 77.0% at 1.0 C over 400 cycles. Furthermore, the sulfur cathode with the assistance of Cu-2-T realizes the stable cycling under the practical scenarios of soft-packaged pouch cell and high sulfur loading (6.5 mg cm-2 with the electrolyte usage of 4.5 µL mgS -1).
RESUMO
The Li-CO2 batteries utilizing greenhouse gas CO2 possess advantages of high energy density and environmental friendliness. However, these batteries following Li2CO3-product route typically exhibit low work voltage (<2.5â V) and energy efficiency. Herein, we have demonstrated for the first time that cobalt phthalocyanine (CoPc) as homogeneous catalyst can elevate the work plateau towards 2.98â V, which is higher than its theoretical discharge voltage without changing the Li2CO3-product route. This unprecedented discharge voltage is illustrated by mass spectrum and electrochemical analyses that CoPc has powerful adsorption capability with CO2 (-7.484â kJ mol-1) and forms discharge intermediate of C33H16CoN8O2. Besides high discharge capacity of 18724â mAh g-1 and robust cyclability over 1600â hours (1000â mAh g-1 cut-off) at a current density of 100â mA g-1, the batteries show high temperature adaptability (-30-80 °C). Our work is paving a promising avenue for the progress of high-efficiency Li-CO2 batteries.
RESUMO
Ammonia (NH3) is industrially produced from dinitrogen (N2) and dihydrogen (H2) by the Haber-Bosch process, although H2 is prepared from fossil fuels, and the reaction requires harsh conditions. On the other hand, microorganisms have fixed nitrogen under ambient reaction conditions. Recently, well-defined molecular transition metal complexes have been found to work as catalyst to convert N2 into NH3 by reactions with chemical reductants and proton sources under ambient reaction conditions. Among them, involvement of both N2-splitting pathway and proton-coupled electron transfer is found to be very effective for high catalytic activity. Furthermore, direct electrocatalytic and photocatalytic conversions of N2 into NH3 have been recently achieved. In addition to catalytic formation of NH3, selective catalytic conversion of N2 into hydrazine (NH2NH2) and catalytic silylation of N2 into silylamines have been reported. Catalytic C-N bond formation has been more recently established to afford cyanate anion (NCO-) under ambient reaction conditions. Further development of direct conversion of N2 into nitrogen-containing compounds as well as green ammonia synthesis leading to the use of ammonia as an energy carrier is expected.
RESUMO
Biodiesel is a highly promising and viable alternative to fossil-based diesel that also addresses the urgent need for effective waste management. It can be synthesized by the chemical modification of triglycerides sourced from vegetable origin, animal fat, or algal oil. The transesterification reaction is the preferred method of producing biodiesel. However, the non-miscibility of alcohol and oil layer causes excessive utilization of alcohol, catalyst, and a substantial reacting time and temperature. In the current investigation, transesterification of waste fish oil was performed with petro-diesel as cosolvent, under the influence of ultrasound energy. The combination of both techniques is a unique and efficient way to minimize the mass transfer limitations considerably and hence reduces the parameters of the reaction. It is also a sincere effort to comply with the principles of green chemistry. The optimum reaction conditions were obtained using response surface methodology (RSM) that were as follows: molar ratio of methanol to oil 9.09:1, catalyst concentration of 0.97 wt%, cosolvent concentration of 29.1 wt%, temperature 60.1â, and a reacting time 30 min. Under these listed conditions, 98.1% biodiesel was achievable, which was in close agreement with the expected result. In addition, the cosolvent removal step from the crude biodiesel was also eliminated as it could be employed as a blended fuel in CI engines.
Assuntos
Biocombustíveis , Óleos de Plantas , Animais , Esterificação , Metanol , CatáliseRESUMO
Herein, a new type of pyranocoumarin derivatives 7-alkyl or aryl-6H,7H-benzo[f]chromeno[4,3-b] chromen-6-ones (2a-h) was developed via three component reaction of 4-hydroxy coumarin, ß-naphthol and aliphatic/aryl aldehydes using 25 mol% of N,N-disulfopiperidinium bisulfate [DSPP][HSO4] as homogeneous recyclable Brönsted acidic ionic liquid catalyst in EtOAc under reflux to produce excellent yields (89-97%) of the products within 2-4 h reaction. In neat condition, the same reaction required 4.5 h to produce 90% yield of model product (2d) at 100 â, which took only 2.5 h to yield 97% of the same product in EtOAc under reflux temperature.
Assuntos
Líquidos Iônicos , Aldeídos , CatáliseRESUMO
Butene-1 is one of the most important petrochemical industry products that is produced in different ways. Ethylene is an important source of Butene-1 production through the oligomerization process. In this study, to reduce the by-product of the polymer produced and to improve the catalyst yield, the dicyclopentyldimethoxysilane (DCPDS) modifier in the presence of a homogeneous titanium tetra butoxide/triethyl aluminum catalyst and a combination of dichloromethane (as a promoter) in a high-pressure Buchi reactor were used. Gas chromatography was used for liquid and gas phase analysis in the reactor. The design of experiments was performed with the Box-Behnken design technique (BBD) based on the response surface method (RSM). In this method, four effective factors of catalyst concentration, modifier, promoter, and temperature were evaluated. The results of the analysis of variance for the answers of ethylene conversion rate, selectivity, polymer production rate, and yield showed that there is a good agreement between the actual values and the values obtained from the model. Optimization using design expert software showed values of 85.6, 88.5, 2.43, and 75.78% for ethylene conversion rate, selectivity, polymer content and yield, respectively, which showed an error of less than one percent compared to the laboratory results. Comparison of the catalyst performance with and without DCPDS and DCM showed that the presence of these two compounds together with the catalyst, in addition to increasing by 4, 6, and 9% for conversion, selectivity of Butene-1 and yield, respectively, reduced the production of the undesirable polymer in the reactor from 136 mg to 2.4 mg.
RESUMO
Inspired by recent advances on functional modification of cellulosic materials, the crosslinking behaviors of epoxide with cellulose under the catalysis of different homogeneous catalysts including H2O, Brønsted acid, Brønsted base, Lewis acid and neutral salt were systematically investigated using density functional theory (DFT) methods with hybrid micro-solvation-continuum approach. The results showed that catalytic activity, reaction mechanism and regioselectivity are determined by the combined effect of catalyst type, electronic effect and steric hindrance. All the homogeneous catalysts have catalytic activity for the crosslinking reaction, which decreases in the order of NaOH > HCl > NCl3 > MCl2 > CH3COOH > NaCl (N = Fe3+, Al3+; M = Zn2+, Ca2+). Upon the catalysis of NaOH, hydroxyl group of cellulose is firstly deprotonated to form a carbanion-like intermediate which will further attack the less sterically hindered C atom of epoxide showing excellent regioselectivity. Acidic catalysts readily cause epoxide protonated, which suffers from nucleophilic attack of cellulose and forms the carbocation-like intermediate. Brønsted acid exhibits poor regioselectivity, however, Lewis acid shows an interesting balance between catalytic activity and regioselectivity for the crosslinking reaction, which may be attributed to the unique catalysis and stabilization effects of its coordinated H2O on the transition state structure.
Assuntos
Celulose , Compostos de Epóxi , Compostos de Epóxi/química , Solventes/química , Hidróxido de Sódio , Catálise , Ácidos de LewisRESUMO
Hydrothermal liquefaction of corn, soybean, rice and wheat straws with K3PO4, Fe and Fe + K3PO4 at 320 °C for 30 min was examined. The addition of K3PO4 led to the highest biocrude yields from hydrothermal liquefaction of rice straws (39.20 wt%). Particularly, the biocrude yields from K3PO4-catalyzed hydrothermal liquefaction of corn and rice straws were â¼ 10 wt% higher than those from non-catalytic run (19.4 and 27.8 wt%). Catalytic hydrothermal liquefaction with K3PO4 had minimal impact on the elemental compositions of biocrudes and solid residue. Furthermore, K3PO4 promoted the enrichment of low-boiling components in biocrudes by 2.02 wt%. for hydrothermal liquefaction of wheat straw. Moreover, the incorporation of K3PO4 induces the occurrence of dense porous structure on the surface of solid residue, making it highly suitable as an adsorbent or catalyst carrier. Finally, potential reaction network and mechanisms of catalytic hydrothermal liquefaction of straw have been proposed and discussed detailly.
Assuntos
Ferro , Água , Água/química , Temperatura , Biomassa , Zea mays , BiocombustíveisRESUMO
We report on the high potential of a honeycomb reactor for the use in aerobic oxidation under continuous-flow conditions. The honeycomb reactor is made of porous material with narrow channels separated by porous walls allowing for high density accumulation in the reactor. This structure raised the mixing efficiency of a gas-liquid reaction system, and it effectively accelerated the aerobic oxidation of benzyl alcohols to benzaldehydes under continuous-flow conditions. This reactor is a promising device for streamlining aerobic oxidation with high process safety because it is a closed system.
RESUMO
As an emerging energy storage concept, Al-CO2 batteries have not yet been demonstrated as a rechargeable system that can deliver a high discharge voltage and a high capacity. In this work, we present a homogeneous redox mediator to access a rechargeable Al-CO2 battery with an ultralow overpotential of 0.05 V. In addition, the resulting rechargeable Al-CO2 cell can maintain a high discharge voltage of 1.12 V and delivers a high capacity of 9394 mAh/gcarbon. Nuclear magnetic resonance (NMR) analysis indicates that the discharge product is aluminum oxalate which can facilitate the reversible operation of Al-CO2 batteries. The rechargeable Al-CO2 battery system demonstrated here holds great promise as a low-cost and high-energy alternative for future grid energy storage applications. Meanwhile, the Al-CO2 battery system could facilitate capture and concentration of atmospheric CO2, ultimately benefiting both the energy and environmental sectors of society.
RESUMO
We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.
RESUMO
As one of the important factors in chemical production, catalyst content directly affects the process of reaction and the quality of products. The quantitative analysis of trace catalyst in homogeneous reaction system is still faced with great challenges. In this work, a simple and effective approach to the rapid determination of trace homogeneous catalyst (THC) was proposed based on UV-vis spectrophotometry. Wavelet transform and Tchebichef curve moment methods were combined with gray wolf algorithm to extract the feature information from the original UV-vis spectra of samples. Then the partial least-squares model was established. The predictive correlation coefficient (Rp2) was 0.9842, and the limit of quantification was 0.07 . The intra-day and inter-day precision were 3.97 % and 4.36 %, respectively. The spiked recoveries of three different concentrations in actual samples were between 97.6 and 101.9 %. The results indicated that the obtained model was satisfactory and could be used in practical measurement. Compared with the conventional modeling methods, the proposed approach was more accurate and reliable, which provided a feasible new pathway for enterprise product quality control.
Assuntos
Algoritmos , Análise de Ondaletas , Análise dos Mínimos Quadrados , Controle de QualidadeRESUMO
The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.
Assuntos
Biocombustíveis , Óleos de Plantas , Biomassa , Catálise , Esterificação , LigninaRESUMO
Fractionation of lignocellulosic is a fundamental step in the production of value-added biobased products. This work proposes an initiative to efficiently extract lignin from the corn stover using a single-step solvothermal fractionation in the presence of an acid promoter (H2SO4). The organic solvent mixture used consists of ethyl acetate, ethanol, and water at a ratio of 30: 25:45 (v/v), respectively. H2SO4 was utilized as a promoter to improve the performance and selectivity of lignin removal from the solid phase and to increase the amount of recovered lignin in the organic phase. The optimal conditions for this extraction, based on response surface methodology (RSM), are a temperature of 180°C maintained for 49.1 min at an H2SO4 concentration of 0.08 M. The optimal conditions show an efficient reaction with 98.0% cellulose yield and 75.0% lignin removal corresponding to 72.9% lignin recovery. In addition, the extracted lignin fractions, chemical composition, and structural features were investigated using Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (2D-HSQC NMR). The results indicate that the recovered lignin primarily contains a ß-O-4 linking motif based on 2D-HSQC spectra. In addition, new C-C inter-unit linkages (i.e., ß-ß, and ß-5) are not formed in the recovered lignin during H2SO4-catalyzed solvothermal pretreatment. This work facilitates effective valorization of lignin into value-added chemicals and fuels.
RESUMO
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Assuntos
Quitosana/química , Química Verde , Compostos Heterocíclicos/síntese química , Catálise , NanotecnologiaRESUMO
The chemoselective reduction of aromatic nitro compounds to amine derivatives was easily performed with remarkable yields under ultrasonic conditions in a H2O/MeOH mixture (v/v = 1/4). In this process, commercially available BINAP.PdCl2 and NaBH4 were used as homogenous catalysts and the hydrogen source, respectively. The developed method has a high economic value and can be adapted to the industry. A variety of nitroarene derivatives were reacted by undergoing the BINAP.PdCl2 catalyzed reduction reaction. All nitroarenes were selectively hydrogenated to aromatic primary amines with quantitative yields in 15 min. The obtained primary amines were determined by 1H and 13C nuclear magnetic resonance spectroscopy.
Assuntos
Aminas , Nitrocompostos , Catálise , HidrogenaçãoRESUMO
A high valent Fe(VI) homogenous catalyst was synthesized following electrochemical route for the efficient removal of a greenhouse gas (N2O) by mediated electro catalytic oxidation (MEO) in an electro-scrubbing process. This paper describes the room temperature degradation of N2O using a consistently generable hexavalent Fe(VI) homogenous catalyst. The ferrate (VI) was electrochemically generated by employing a membrane divided cell, and quantified by monitoring the changes in the ORP (oxidation/reduction potential) along with a potentiometric titration by the chromite method using chromium Cr(III) as a titrant. In addition, the formation of ferrate (VI) was confirmed through UV-visible spectroscopy study results. The change in the ORP values from 360 mV to 253 mV and the change in concentration of electrogenerated Fe(VI) from (4 mM) to (2.9 mM) during N2O removal confirmed that N2O removal followed a mediated electrocatalytic oxidation (MEO) process. An online FTIR gas analyzer study results revealed approximately 90% degradation efficiency of N2O during the MEO process in a gas mixture containing 5 ppm N2O at a 0.2 L min-1 gas flow rate at ambient temperature. The energy efficiency for N2O removal using the Fe(VI) mediator resulted in ten times higher (0.0021 g kWh-1) than the existing MER (0.00063 g kWh-1) process. The possible consistent generation of a homogenous electrocatalyst and its degradation of greenhouse gases at ambient temperature process can be explored to a more practical level.
Assuntos
Oxidantes , Poluentes Químicos da Água , Catálise , Cromo , Oxirredução , Temperatura , Poluentes Químicos da Água/análiseRESUMO
The paper describes transesterification of oil by methanol with use of cosolvents such as ethyl acetate, tetrahydrofuran, hexane, acetone and diethyl ether at catalyst homogeneous (potassium hydroxide) and heterogeneous (mixed oxides). The cosolvents dissolve oil and methanol to form a single (homogeneous) phase, which increases the reaction rate. Therefore, the biodiesel production will be environmentally friendly because less energy is consumed, which increases sustainability. The whole binodal curve of ternary plots of oil, methanol and cosolvent was determined to find the molar ratio, in which the reaction mixture forms a single phase. The ethyl acetate and tetrahydrofuran have relatively small heterogeneous region, because of the similarity of their electric dipole moment with methanol. After transesterification, the detailed analysis of ester and also glycerol phase was carried out. For homogeneous catalyst, the highest esters content in the ester phase was achieved with tetrahydrofuran. For heterogeneous catalyst, the ester content was lower with cosolvent than without cosolvent, probably due to dilution of reaction components by cosolvent or bonding of cosolvent to the active sites of the catalyst.
Assuntos
Biocombustíveis , Ésteres , Catálise , Esterificação , Metanol , Óleos de PlantasRESUMO
The high dosage of catalyst requirement and weak anti-interference ability limit current heterogeneous manganese (Mn) catalyst/peroxymonosulfate (PMS) systems to remediate the organic polluted wastewater in complicated environment. Inspired by the concept of atom economy, herein, a homogenous manganese complex bearing a cross-bridged cyclam ligand Mn(cbc)Cl2 (MnL, L = cbcâ¯=â¯4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)) is capable of activating PMS for reactive brilliant red K-2BP (RBR K-2BP) degradation. The dosage of MnL for PMS activation was low, in a range of 0.38â¼3.8â¯mg/L. The quenching experiments demonstrated that the degradation was a nonradical-controlled process. Using methyl phenyl sulfoxide (PMSO) as a probe, the dominated degradation process of substrate was via an oxygen transfer pathway. Moreover, a high-valent Mn-oxo [(O)MnVLCl2]+ was directly detected using electrospray ionization mass spectrometry (ESI/MS). This system showed excellent anti-interference ability to both anions and humic acid, a typical natural organic matter. The atom economy, represented by an index ((mg pollutant)/h/(g catalyst)), showed that MnL 22737 in PMS activation was much higher than those of Mn-based heterogeneous catalytic systems 67â¼960 and was only behind that of iron-tetraamidomacrocyclic ligand Fe-TAML 59139. This work provides insights into designing an atom-economic Mn-based PMS activator for efficient treatments for organic pollutants in a complicated environment.