RESUMO
Horizontal wells have gained popularity as a technology for exploring water resources and remediating aquifers over the last decades, due to costs and numerous technical benefits compared to traditional vertical wells. This study presents a set of analytical solutions for drawdown distribution and various components of water budget contributing to flow toward a horizontal well in an aquifer-aquitard system interacting with a fully penetrating stream. It is assumed that the water level in the upper unconfined aquifer remains fixed at a specific elevation during the course of the pumping in the lower leaky aquifer. The water budget components account for inflows from aquifer storage, stream depletion, and leakage across the aquifer-aquitard interface. Analytical solutions to this three-dimensional, transient, non-axisymmetric Darcian flow model are given for both transient and steady-state flow conditions, relying on a four-fold integral transform technique that includes a Robin-type boundary condition at the aquifer-aquitard interface. It is shown how various components of water budget collectively counterbalance the effect of pumping discharge, confirming that the mass is conserved under both continuous and non-continuous pumping scenarios. Response maps are prepared to assess how different components of water budget react to changes in the well position. Furthermore, it is found that the components of water budget are most sensitive to the well-to-stream distance and anisotropy ratio of the leaky aquifer.
Assuntos
Água Subterrânea , Rios , Água Subterrânea/química , Rios/química , Movimentos da Água , Modelos Teóricos , Poços de Água , Abastecimento de ÁguaRESUMO
Steam-assisted gravity drainage (SAGD) is an efficient thermal recovery technique for oil sands and extra heavy oil exploitation. The development of steam chamber goes through multi-stage physical processes for SAGD production in a heavy oil reservoir with an interlayer. In this study, considering the situation that an interlayer is located directly above a pair of horizontal wells, we analyzed the whole process of steam chamber development. We divided the whole process into stages I-V, which are the first rising stage, the first lateral expansion stage, the second rising stage, the second lateral expansion stage and the confinement stage, respectively. Particularly, we further divided stage II into 2 periods and stage IV into 3 periods. These stages and periods can help us understand the development process of steam chamber dominated by an interlayer more profoundly. Based on the divided stages and periods, we established different models of SAGD production by assuming different geometric shapes of steam chamber in different stages and periods. Oval shape was assumed in stages I and III, and inverse triangle shape was hypothesized in stages II, IV and V. The formulas of the front distance of steam chamber and the oil production rate of SAGD were deduced from the established models for different development stages. At the end, we performed two example applications to SAGD production in heavy oil reservoirs with an interlayer. The real oil production rates were matched very well with the theoretical oil production rates calculated by the deduced formulas, which implies the multi-stage development model of steam chamber is of reliability and utility.
RESUMO
A 3D vertical seismic profiling (VSP) survey was acquired using a distributed acoustic sensing (DAS) system in the Permian Basin, West Texas. In total, 682 shot points from a pair of vibroseis units were recorded using optical fibers installed in a 9000 ft (2743 m) vertical part and 5000 ft (1524 m) horizontal reach of a well. Transmitted and reflected P, S, and converted waves were evident in the DAS data. From first-break P and S arrivals, we found average P-wave velocities of approximately 14,000 ft/s (4570 m/s) and S-wave velocities of 8800 ft/s (3000 m/s) in the deep section. We modified the conventional geophone VSP processing workflow and produced P-P reflection and P-S volumes derived from the well's vertical section. The Wolfcamp formation can be seen in two 3D volumes (P-P and P-S) from the vertical section of the well. They cover an area of 3000 ft (914 m) in the north-south direction and 1500 ft (460 m) in the west-east direction. Time slices showed coherent reflections, especially at 1.7 s (~11,000 ft), which was interpreted as the bottom of the Wolfcamp formation. Vp/Vs values from 2300 ft (701 m) -8800 ft (2682 m) interval range were between 1.7 and 2.0. These first data provide baseline images to compare to follow-up surveys after hydraulic fracturing as well as potential usefulness in extracting elastic properties and providing further indications of fractured volumes.
RESUMO
A flexible drilling tool is a special drilling tool for ultrashort-radius radial horizontal wells. This tool is composed of many parts and has the characteristics of a multibody system. In this paper, a numerical method for the dynamic analysis of flexible drilling tools is proposed. The flexible drill tool is discretized into spatial beam elements, while the multilayer contact of the flexible drilling tool is represented by the multilayer dynamic gap element, and the dynamic model of the multibody system for the flexible drilling tool's multilayer contact is established, considering the interaction force between the drill bit and the rock. The nonlinear dynamic equation is solved using the Newmark method and Newton-Raphson method. An analysis of the dynamic behavior of a flexible drilling tool is conducted. The results indicate that the flexible drilling tool experiences vortex formation due to the interaction between the flexible drilling pipe and the guide pipe, leading to increased friction and wear. This situation hinders safe drilling operations with flexible drilling tools. The collision force of the flexible drilling tool near the bottom of the hole is more severe than that of the other tool types, which may lead to failure of the connection.
RESUMO
In this work, the comprehensive properties of flammable casing for underground coal gasification is systematically investigated, including flammable casing material physical, chemical and mechanical properties and full-size flammable casing mechanical properties and burning behavior. The flammable casing material consists of magnesium alloy matrix and rare earth particles, thermal conductivity and expansion property of which are weak. Results of high-temperature tensile test reveal that flammable casing material has good high temperature strength which declines by 30 % at 300 °C. Corrosion rate of flammable casing material is relatively high without extra protection. The full-size flammable casing possesses considerable mechanical property, thread property and high temperature collapse resistance. Burning of flammable casing is safe and stable. Burning rate of flammable casing material can be effectively controlled by water flow. Combustion product of flammable casing presents powder condition, which has no risk of blocking the gasification channel. To sum up, flammable casing is necessary to the realization of underground coal gasifying process, which plays the significant role of the development and application of underground coal gasification technology.
RESUMO
Formation damage in drilling comes from drilling fluid invasion due to high differential pressure between a wellbore and the formation. This mechanism happens with fracture fluid invasion of multi-fractured horizontal wells in tight formations. Some multi-fractured wells show production rates and cumulative productions far lower than expected. Those damaged wells may sustain further impact such as well shutting due to unexpected events such as the COVID-19 outbreak and then experience a further reduction in cumulative production. This paper focuses on the root causes of formation damage of fractured wells and provides possible solutions to improve production. A simulation study was conducted using Computer Modelling Group software to simulate formation damage due to fracture fluid invasion and well shut-in. Simulation results revealed that the decrease in cumulative hydrocarbon production due to leak-off and shut-in of the simulated well could range from 20 to 41%, depending on different conditions. The results showed that the main causes are high critical water saturation of tight formations, low drawdown, and low residual proppant permeability under formation closure stress. The sensitivity analysis suggests two feasible solutions to mitigate formation damage: optimizing drawdown during production and optimized proppant pack permeability of the hydraulic fracturing process. Optimizing pressure drawdown is effective in fixing leak-off damage, but it does not mitigate shut-in damage. Formation damage due to shut-in should be prevented in advance by using an appropriate proppant permeability. These key findings enhance productivity and improve the economics of tight gas and shale oil formations.
RESUMO
During drilling in deep shale gas reservoirs, drilling fluid losses, hole wall collapses, and additional problems occur frequently due to the development of natural fractures in the shale formation, resulting in a high number of engineering accidents such as drilling fluid leaks, sticking, mud packings, and buried drilling tools. Moreover, the horizontal section of horizontal well is long (about 1500 m), and the problems of friction, rock carrying, and reservoir pollution are extremely prominent. The performance of drilling fluids directly affects drilling efficiency, the rate of engineering accidents, and the reservoir protection effect. In order to overcome the problems of high filtration in deep shale formations, collapse of borehole walls, sticking of pipes, mud inclusions, etc., optimization studies of water-based drilling fluid systems have been conducted with the primary purpose of controlling the rheology and water loss of drilling fluid. The experimental evaluation of the adsorption characteristics of "KCl + polyamine" anti-collapse inhibitor on the surface of clay particles and its influence on the morphology of bentonite was carried out, and the mechanism of inhibiting clay mineral hydration expansion was discussed. The idea of controlling the rheology and water loss of drilling fluid with high temperature resistant modified starch and strengthening the inhibition performance of drilling fluid with "KCl + polyamine" was put forward, and a high temperature-resistant modified starch polyamine anti-sloughing drilling fluid system with stable performance and strong plugging and strong inhibition was optimized. The temperature resistance of the optimized water-based drilling fluid system can reach 180 °C. Applied to on-site drilling of deep shale gas horizontal wells, it effectively reduces the rate of complex accidents such as sticking, mud bagging, and reaming that occur when resistance is encountered during shale formation drilling. The time for a single well to trip when encountering resistance decreases from 2-3 d in the early stages to 3-10 h. The re-use rate of the second spudded slurry is 100 percent, significantly reducing the rate of complex drilling accidents and saving drilling costs. It firmly supports the optimal and rapid construction of deep shale gas horizontal wells.
Assuntos
Gás Natural , Água , Temperatura , Argila , Minerais , AmidoRESUMO
Oil rim reservoirs with very large gas caps, strong aquifers, and pay thickness below 30 ft. pose oil production challenges to operators. With best operational practices, very high gas oil ratios are recorded at the initial onset of oil production, thus such reservoirs are subjected to a gas cap blow down leading to an ultimate loss in oil reserves. This loss is attributed to a rapid and drastic drop in pressure over the productive life of the reservoir. To maximize oil production, a simulation study is focused on initiating oil wells at different time intervals and estimating oil recoveries at these points. It is believed that the gas cap would have been blown down in time to accommodate for substantial oil production. This study presents the reservoir data (from the Niger-Delta) that can be incorporated in a black oil reservoir simulator (Eclipse) coupled with best production and optimization strategies (water and gas injection) for maximum oil production during gas cap blow down. The data presented will provide a detailed process developing an oil rim synthetic model, support and enhance further studies in optimizing oil production in oil rims subjected to gas cap blow down, create a template for secondary and enhanced oil recovery processes.
RESUMO
Horizontal well water coning in offshore fields is one of the most common causes of rapid declines in crude oil production and, even more critical, can lead to oil well shut down. The offshore Y oil field with a water cut of 94.7% urgently needs horizontal well water control. However, it is a challenge for polymer gels to meet the requirements of low-temperature (55 °C) gelation and mobility to control water in a wider range. This paper introduced a novel polymer gel cross-linked by hydrolyzed polyacrylamide and chromium acetate and phenolic resin for water coning control of a horizontal well. The detailed gelant formula and treatment method of water coning control for a horizontal well in an offshore field was established. The optimized gelant formula was 0.30~0.45% HPAM + 0.30~0.5% phenolic resin + 0.10~0.15% chromium acetate, with corresponding gelation time of 26~34 h at 55 °C. The results showed that this gel has a compact network structure and excellent creep property, and it can play an efficient water control role in the microscopic model. The thus-optimized gelants were successively injected with injection volumes of 500.0 m3. The displacement fluid was used to displace gelants into the lost zone away from the oil zone. Then, the formed gel can be worked as the chemical packer in the oil-water interface to control water coning after shutting in for 4 days of gelation. The oil-field monitoring data indicated that the oil rate increased from 9.2 m3/d to 20.0 m3/d, the average water cut decreased to 60~70% after treatment, and the cumulative oil production could obtain 1.035 × 104 t instead of 3.9 × 103 t.
RESUMO
The primary objective of this study was to investigate the energy recovery performance of the permafrost hydrate deposit in the Qilian Mountain at site DK-2 using depressurization combined with thermal injection by the approach of numerical simulation. A novel multi-well system with five horizontal wells was applied for large-scale hydrate mining. The external heat is provided by means of water injection, wellbore heating, or the combinations of them through the central horizontal well, while the fluids are extracted outside from the other four production wells under constant depressurization conditions. The injected water can carry the heat into the hydrate deposit with a faster rate by thermal convection regime, while it also raises the local pressure obviously, which results in a strong prohibition effect on hydrate decomposition in the region close to the central well. The water production rate is always controllable when using the multi-well system. No gas seepage is observed in the reservoir due to the resistance of the undissociated hydrate. Compared with hot water injection, the electric heating combined with normal temperature water flooding basically shows the same promotion effect on gas recovery. Although the hydrate regeneration is more severe in the case of pure electric heating, the external heat can be more efficiently assimilated by gas hydrate, and the efficiency of gas production is best compared with the cases involving water injection. Thus, pure wellbore heating without water injection would be more suitable for hydrate development in deposits characterized by low-permeability conditions.
RESUMO
Vertical wells are conventionally used to lower leachate levels or pressures in municipal solid waste (MSW) landfills. However, they are not always efficient or even effective, and in some circumstances retro-fitted horizontal wells represent a potential alternative. However, horizontal wells can be difficult to install and there is a lack of data on their performance. This paper describes the trial construction and operation of three horizontal wells in a landfill at Tianziling, China. The trial was used to develop an improved well installation technique, and to demonstrate the viability of the approach in a typical Chinese landfill. Three wells, between 50 m and 56 m in length, were successfully installed using an improved casing-protected directional drilling method. Average leachate flow rates of two wells were 10.66 m3/day and 3.93 m3/day, respectively. After 74 days of drainage, the maximum leachate level drawdown around the highest flow well was 2.7 m and its distance of influence was up to 50 m. Building on the experience gained at Tianziling, a wellfield comprising twelve horizontal wells having a total length of 1000 m was installed at Xingfeng landfill. After 157 days of drainage, a total volume of ~24,000 m3 leachate had been discharged and the leachate level had been lowered to near the elevation of the horizontal wells. This paper indicates the effectiveness of horizontal wells in reducing leachate level in landfills containing MSW typical of that generated in China, and gives data on installation and performance that may be useful for the design and operation of such an approach.
Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , China , Pressão , Resíduos Sólidos , Instalações de Eliminação de ResíduosRESUMO
To dynamically monitor the horizontal well, we studied the oil-water two-phase water holdup detection method based on transmission lines, and designed a micro-sensor and a sensor-array water holdup detection tool. We modeled the relationship of the dielectric constant of the transmission line filling medium and the amplitude and phase shift of the electromagnetic wave signal on the transmission line by using the time-domain analysis. We proposed a novel method to measure the water holdup of oil-water mixtures based on the phase shift of signals on the conical spiral transmission line. Furthermore, we simulated and optimized the structural parameters by software simulation, and developed a small conical spiral water holdup sensor suitable for arraying. The single sensor with detection circuits can achieve the full scale (water holdup from 0% to 100%) measurement with resolution better than 3%. On this basis, 12 sensors are used to develop a clock-like sensor-array water holdup detection tool, realizing the array detection of the distribution of the cross-section medium in horizontal wells.
RESUMO
Velocity and flow field are both parameters to measure flow characteristics, which can help determine the logging location and response time of logging instruments. Particle image velocimetry (PIV) is an intuitive velocity measurement method. However, due to the limitations of image acquisition equipment and the flow pipe environment, the velocity of a horizontal small-diameter pipe with high water cut and low flow velocity based on PIV has measurement errors in excess of 20%. To solve this problem, this paper expands one-dimensional displacement sub-pixel fitting to two dimensions and improves the PIV algorithm by Kriging interpolation. The improved algorithm is used to correct the blank and error vectors. The simulation shows that the number of blank and error vectors is reduced, and the flow field curves are smooth and closer to the actual flow field. The experiment shows that the improved algorithm has a maximum measurement error of 5.9%, which is much lower than that of PIV, and that it also has high stability and a repeatability of 3.14%. The improved algorithm can compensate for the local missing flow field and reduce the requirements related to the measurement equipment and environment. The findings of this study can be helpful for the interpretation of well logging data and the design of well logging instruments.
RESUMO
This paper considers a three-dimensional trajectory design problem for horizontal well. The problem is formulated as an optimal control problem of switched systems with continuous state inequality constraints. Since the complexity of such constraints and the switching instants is unknown, it is difficult to solve the problem by standard optimization techniques. To overcome the difficulty, by a time-scaling transformation, a smoothing technique and a penalty function method, an efficient computational method is proposed for solving this problem. Convergence results show that, for a sufficiently large penalty parameter, any local optimal solution of the approximate problem is also a local optimal solution of the original problem. Two numerical examples are presented to illustrate the efficiency of the approach proposed.
RESUMO
Oil production from wells reduces with time and the well becomes uneconomic unless enhanced oil recovery (EOR) methods are applied. There are a number of methods currently available and each has specific advantages and disadvantages depending on conditions. Currently there is a big demand for new or improved technologies in this field, the hope is that these might also be applicable to wells which have already been the subject of EOR. The sonochemical method of EOR is one of the most promising methods and is important in that it can also be applied for the treatment of horizontal wells. The present article reports the theoretical background of the developed sonochemical technology for EOR in horizontal wells; describes the requirements to the equipment needed to embody the technology. The results of the first field tests of the technology are reported.