Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.507
Filtrar
1.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003048

RESUMO

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Assuntos
Disruptores Endócrinos , Células-Tronco , Disruptores Endócrinos/toxicidade , Humanos , Células-Tronco/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Exposição Ambiental
2.
Psychoneuroendocrinology ; 169: 107161, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39116520

RESUMO

Difficulties in fear regulation can sometimes result in maladaptive fear responses. To better understand how to improve fear regulation, it is important to determine how known factors, such as sex hormone status and stress, might interact to influence fear memory. Research has shown that women with high estradiol levels (mid-cycle) and men exhibit better extinction retention compared to women with low estradiol levels (women in the early follicular cycle or using oral contraceptives). Stress has also been demonstrated to affect both the learning and retention of extinction. Despite documented interactions between stress and sex hormones, their combined effects have not been thoroughly studied. This study aims to examine the impact of stress as a function of sex hormone status on extinction learning and retention. A total of 168 non-clinical participants were studied, including men (n = 46), women using oral contraceptives (n = 38), women in the early follicular phase (n = 40), and women in mid-cycle (n = 44). On Day 1, fear acquisition training was performed. On day 2, prior to extinction training, half of the participants were exposed to a psychosocial stressor, while the other half performed a non-stressful control task. On day 3, extinction retention was tested. Fear was quantified using skin conductance responses, while stress hormones were quantified through saliva samples. Exposure to stress prior to extinction training did not affect extinction learning, regardless of sex hormone status. In contrast, pre-extinction stress exposure had different effects on extinction retention depending on hormone status. Stressed men showed impairment in extinction retention compared to controls, while the experimental condition had no effect on naturally cycling women. Regardless of stress exposure, early follicular women exhibited a deficit in fear regulation, while mid-cycle women showed effective fear regulation. Among women using oral contraceptives, the stress group demonstrated better extinction retention compared to the control group. These results demonstrate the importance of considering sex hormone status and stress exposure during extinction learning, as both components may modulate extinction retention. These results could help identifying hormonal conditions that may enhance the effectiveness of extinction-based psychological therapies used in the treatment of fear-related disorders.

3.
Front Endocrinol (Lausanne) ; 15: 1400640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109076

RESUMO

Sex steroid hormones (SSH) are extremely versatile molecules with a myriad of physiological functions. Next to their well-known role in sexual development and reproduction, SSH play active roles in practically every tissue in the human body, including the oral cavity. It has long been demonstrated that periodontal tissues express SSH receptors and therefore are responsive to the presence of SSH. Interestingly, SSH not only interact with the periodontal tissues but also with other tissues in the oral cavity such as dental enamel, pulp, cementum, oral mucosa, and salivary glands. Questions concerning the possible physiological functions of these receptors and their role in maintenance of oral health, remain unanswered. The purpose of this scoping review was to gather and summarize all the available evidence on the role of SSH in physiological processes in the oral cavity in humans. Two comprehensive literature searches were performed. References were screened and selected based on title, abstract and full text according to our inclusion criteria. Both searches yielded 18,992 results of which 73 were included. Results were divided into four categories: (1) Periodontium; (2) Dental structure; (3) Mucosa; and (4) Salivary glands. The interaction of these tissues with progestagens, androgens and estrogens are summarized. Sex steroid hormones are an overlooked yet fundamental factor in oral homeostasis. They play important roles in the development and function of the periodontium, dental structure, mucosa and salivary glands. Dentists and healthcare providers should consider these hormonal factors when assessing and treating oral health conditions.


Assuntos
Hormônios Esteroides Gonadais , Homeostase , Humanos , Hormônios Esteroides Gonadais/metabolismo , Homeostase/fisiologia , Boca/metabolismo , Periodonto/metabolismo , Saúde Bucal
4.
BMC Vet Res ; 20(1): 351, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113050

RESUMO

Probiotics are becoming increasingly popular as eco-friendly alternatives in aquaculture. However, there is limited research on their impacts on the reproductive efficiency of Red Tilapia (Oreochromis niloticus x O. mossambicus) broodstock. Therefore, this experiment aimed to explore the combined effects of selective probiotics Bacillus subtilis and B. licheniformis (BSL; 1:1) added to water on blood hematology, serum metabolites, gonadal histology, reproductive performance, and reproductive associated genes in Red Tilapia broodstock. Tilapia broodfish weighing 140-160 g were stocked in four treatment groups: control (T0), and the other three groups were added different levels of BSL to the water as follows: T1 (0.01 g/m3), T2 (0.02 g/m3), and T3 (0.03 g/m3), respectively. Results indicate that BSL administration significantly improved RBCs, hemoglobin, hematocrit, MCH, and MCHC, with the highest improvement seen in the T3 group (P < 0.05). BSL added to the fish water significantly enhanced serum protein fractions (total protein, albumin, and globulins), while AST, ALT, ALP, creatinine, uric acid, and glucose were significantly diminished in a dose-dependent way (P < 0.05). Adding 0.02-0.03 g/ m3 of BSL resulted in higher antioxidant status (superoxide dismutase and catalase) compared to other groups (P < 0.05). Testosterone levels were higher in T3 than in other groups (P < 0.05). All female hormones (LH, FSH, estradiol, and progesterone) were substantially augmented by the addition of BSL. Additionally, the BSL groups exhibited higher GSI, HSI, VSI (male only), egg diameter (mm), mean number of fry/fish, and mean fry weight (g) compared to the control group (P < 0.05). Expression of reproductive-associated genes (vasa, nanos1a, nanos2, dnd1, pum1, AMH, and vtg) were significantly up-regulated in the gonads of fish in the 0.03 g/m3 treatment. The histological gonadal structure exhibited that BSL improved gonad maturation in both genders of Tilapia fish. Overall, adding a mixture of B. subtilis and B. licheniformis (0.03 g/m3 water) can accelerate reproductive performance in Red Tilapia through up-regulation of reproductive genes and enhance the health profile.


Assuntos
Probióticos , Reprodução , Animais , Probióticos/administração & dosagem , Probióticos/farmacologia , Feminino , Masculino , Ciclídeos/fisiologia , Bacillus subtilis , Suplementos Nutricionais , Aquicultura/métodos , Tilápia/fisiologia , Ração Animal/análise , Água/química
5.
J Steroid Biochem Mol Biol ; 244: 106595, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111705

RESUMO

Transgender is a term for people whose gender identity or expression differs from their natal sex. These individuals often seek cross-hormonal therapy to simulate the individual´s desired gender. However, the use of estrogens and testosterone has side effects such as a higher propensity to cancer, weight changes and cardiovascular diseases. Testosterone has also been linked with hypertension. Still, little is known about the outcomes and prevalence of metabolic perturbations in the trans community. Here we aim to analyze if cross-administering sexual hormones affects heart mitochondrial function. Mitochondria produces the ATP needed for heart function. In fact, different studies show that mitochondrial dysfunction precedes cardiac damage. In this work we used either female rats castrated and injected with testosterone or male rats castrated and injected with estrogens for 4 months. We performed an electrocardiogram, and then we isolated heart mitochondria to measure the rate of oxygen consumption, calcium fluxes, membrane potential, superoxide dismutase activity, lipoperoxidation and cytokines. We detected wide modifications in all parameters associated to cross-hormonal administration.

6.
Cells ; 13(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39120315

RESUMO

Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.


Assuntos
Metaboloma , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligantes , Animais
7.
J Steroid Biochem Mol Biol ; 244: 106596, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089343

RESUMO

Since steroids are crucial for diagnosing endocrine disorders, the lack of research on factors that affect hormone levels makes interpreting the results difficult. Our study aims to assess the stability of the pre-analytical procedure and the impact of hormonal physiological fluctuations using real-world data. The datasets were created using 12,418 records from individuals whose steroid hormone measurements were taken in our laboratory between September 2019 and March 2024. 22 steroid hormones in plasma by a well-validated liquid chromatography tandem mass spectrometry method were measured. After normalization transformation, outlier removal, and z-score normalization, generalized additive models were constructed to evaluate preanalytic stability and age, sex, and sample time-dependent hormonal fluctuations. Most hormones exhibit significant variability with age, particularly steroid hormone precursors, sex hormones, and certain corticosteroids such as aldosterone. 18-hydroxycortisol, 18-oxocortisol. Sex hormones varied between males and females. Levels of certain hormones, including cortisol, cortisone, 11-deoxycortisol, 18-hydroxycortisol, 18-oxocortisol, corticosterone, aldosterone, estrone, testosterone, dihydrotestosterone, dehydroepiandrosterone sulfate, 11-ketotestosterone, and 11-hydroxytestosterone, fluctuated with sampling time. Moreover, levels of pregnenolone and progesterone decreased within 1 hour of sampling, with pregnenolone becoming unstable with storage time at 4 degrees after centrifugation, while other hormone levels remained relatively stable for a short period of time without or after centrifugation of the sample. This is the first instance real-world data has been used to assess the pre-analytic stability of plasma hormones and to evaluate the impact of physiological factors on steroid hormones.

8.
Int J Reprod Biomed ; 22(5): 357-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39091424

RESUMO

Background: Since thyroid hormones have an essential role in energy production, early development of the human placenta, embryo development, and implantation, abnormalities in thyroid function can significantly affect pregnancy outcomes. Objective: The present study aimed to investigate the effect of higher thyroid-stimulating hormone (TSH) levels in the normal range in euthyroid women with unexplained infertility. Materials and Methods: In this cross-sectional study, we evaluated the data for 300 euthyroid women aged between 18 and 39 yr with normal TSH levels ( ≤ 5 mIU/L) referred to Yazd Reproductive Sciences Institute, Yazd, Iran from December 2018-March 2021 in 2 groups: the case group (with unexplained infertility) and the control group (with male factor infertility). Finally, age, body mass index, and serum levels of TSH were extracted from participants' medical records and compared between groups. Results: The mean age and TSH level of participants were 31.52 ± 3.52 yr and 1.24 ± 2.59 mIU/L, respectively. 142 women (47.3%) had TSH < 2.5, and 158 women (52.7%) had TSH ≥ 2.5 mIU/L. The women with unexplained infertility had significantly higher TSH levels than controls in the same normal range (0.62 vs. 0.64 mIU/L, p < 0.001). Although a more significant proportion of women in the case group had TSH levels > 2.5 mIU/L, we did not find a significant association between TSH levels and age or body mass index. Conclusion: Women with unexplained infertility have a higher level of serum TSH in the normal range ( ≥ 2.5 mIU/L) than the control group. So, the effect of TSH treatment on these women should be considered.

9.
Biomed Pharmacother ; 178: 117242, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094547

RESUMO

Ovaries are essential for healthy female reproduction, with the follicles as their fundamental functional units, which consist of an oocyte and surrounding granulosa cells. The development and formation of follicles in the ovaries are closely linked to reproductive health. Oxylipins refer to oxidative metabolites produced from the oxidation of polyunsaturated fatty acids, either through automatic oxidation or with the help of specific enzymes. They play crucial regulatory roles in the immune system, oxidative stress, and inflammatory reactions and are intimately linked to the development of numerous illnesses, such as diabetes, heart disease, asthma, and Alzheimer's disease. Furthermore, oxylipins have a complex relationship with ovarian function, and both prostaglandins and leukotrienes produced by arachidonic acid affect processes such as follicle growth and development, ovulation, and hormone regulation. The synthesis and metabolism of oxylipins in the ovaries are finely regulated. Oxylipin dysregulation has been linked to various ovarian diseases, including endometriosis, polycystic ovary syndrome, ovarian cancer, and premature ovarian insufficiency. In addition, potential therapeutic targets and interventions targeting the oxylipin pathway for the treatment of ovarian diseases have become a prominent research focus, including regulating the enzymes responsible for oxylipin synthesis, using anti-inflammatory agents, and regulating lipid metabolism. Recent research has been directed towards improving the reproductive outcomes of women with ovarian diseases through this series of interventions. An overview of the role of oxylipins in ovarian function and disease is provided in this article, which will aid researchers in understanding the current state of the field and in identifying future directions.

10.
J Physiol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087821

RESUMO

The consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart. At ∼9 months preconception, female baboons (Papio hamadryas) were randomly assigned to either a control diet or HF-HED. At 165 days gestational age (term = 184 days), fetuses were delivered by Caesarean section under anaesthesia, humanely killed, and left ventricular cardiac tissue (Control (n = 6 female, 6 male); HF-HED (n = 6 F, 6 M)) was collected. Maternal HF-HED decreased the concentration of active cardiac TH (i.e. triiodothyronine (T3)), and type 1 iodothyronine deiodinase (DIO1) mRNA expression. Maternal HF-HED decreased the abundance of cardiac markers of insulin-mediated glucose uptake phosphorylated insulin receptor substrate 1 (Ser789) and glucose transporter 4, and increased protein abundance of key oxidative phosphorylation complexes (I, III, IV) and mitochondrial abundance in both sexes. Maternal HF-HED alters cardiac TH status, which may induce early signs of cardiac insulin resistance. This may increase the risk of cardiometabolic disorders in later life in offspring born to these pregnancies. KEY POINTS: Babies born to mothers who consume a high fat-high energy diet (HF-HED) prior to and during pregnancy are predisposed to an increased risk of cardiometabolic disorders across the life course. Maternal HF-HED prior to and during pregnancy decreased thyroid hormone triiodothyronine (T3) concentrations and type 1 iodothyronine deiodinase DIO1 mRNA expression in the non-human primate fetal heart. Maternal HF-HED decreased markers of insulin-dependent glucose uptake, phosphorylated insulin receptor substrate 1 and glucose transporter 4 in the fetal heart. Maternal HF-HED increased mitochondrial abundance and mitochondrial OXPHOS complex I, III and IV in the fetal heart. Fetuses from HF-HED pregnancies are predisposed to cardiometabolic disorders that may be mediated by changes in T3, placing them on a poor lifetime cardiovascular health trajectory.

11.
R Soc Open Sci ; 11(7): 240417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086825

RESUMO

An organism's response to its environment is largely determined by changes in the energy supplied by aerobic mitochondrial metabolism via adenosine triphosphate (ATP) production. ATP is especially important under energy-demanding conditions, such as during rapid growth. It is currently poorly understood how environmental factors influence energy metabolism and mitochondrial functioning, but recent studies suggest the role of thyroid hormones (TH). TH are key regulators of growth and metabolism and can be flexibly adjusted to environmental conditions, such as environmental temperature or food availability. To test whether TH enhancement is causally linked to mitochondrial function and growth, we provided TH orally at physiological concentrations during the main growth phase in zebra finch (Taeniopygia guttata) nestlings reared in a challenging environment. TH treatment accelerated maximal mitochondrial working capacity-a trait that reflects mitochondrial ATP production, without affecting growth. To our knowledge, this is the first study to characterize the regulation of mitochondria by TH during development in a semi-naturalistic context and to address implications for fitness-related traits, such as growth.

12.
J Neuroimmunol ; 394: 578419, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39088908

RESUMO

Oxytocin can regulate immunological activity directly or indirectly; however, immunological functions and mechanisms of oxytocin actions under chronic stress like cesarean delivery (CD) are poorly understood. Our study found that abnormal oxytocin production and secretion in CD rats caused atrophy of thymic tissues. Neurotoxin kainic acid microinjected into the dorsolateral supraoptic nucleus in male rats selectively reduced hypothalamic oxytocin levels, increased corticotrophin-releasing hormone and plasma interleukin-1ß while reducing plasma oxytocin, thyroxine and testosterone levels and causing atrophy of immune tissues. Thus, plasma oxytocin is essential for immunological homeostasis, which involves oxytocin facilitation of thyroid hormone and sex steroid secretion.

13.
Theriogenology ; 228: 37-53, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089073

RESUMO

Placental infection is an important cause of late-term pregnancy loss and neonatal diseases in horses. Detection of changes in blood parameters especially during early placentitis could improve the diagnostic accuracy, treatment decision, and potential outcomes. The objectives of this 2-part study were to identify differences in circulating immunological, inflammatory, and hormonal parameters between mares with natural ascending placentitis and control mares; evaluate each and combination of parameters as predictors of placentitis; and determine how these parameters indicate severity of placentitis. Reproductive examination and blood sampling were prospectively performed on pregnant mares in a natural setting. Study 1 enrolled mares diagnosed with early stage of ascending placentitis based on ultrasonographic findings (n = 12), and gestationally age-matched mares with healthy pregnancies as controls (n = 12). Blood samples were classified as pre-onset (before) and early onset (at the time of ultrasonographic changes) of placentitis. There were no detected statistically significant differences between groups and timepoints in immunological and inflammatory parameters, including peripheral lymphocyte subpopulations, cytokine, and serum amyloid A concentrations. The placentitis group showed a reduced (P = 0.01) DHP/20α-DHP ratio when compared to the control group at the early onset timepoint. Plasma estradiol-17ß concentration <359 pg/mL predicted ascending placentitis with acceptable accuracy (area under the curve, AUC = 0.71). Combined albumin <3.7 g/dL, estradiol-17ß < 499 ng/mL, and DHP <33 ng/mL predicted 100 % of cases of ascending placentitis. In study 2, samples were classified according to the presence and severity of the abnormal ultrasonographic findings as mild (n = 11) and moderate-severe (n = 23), and gestationally age-matched with samples from control mares (n = 34). Mares with moderate-severe ascending placentitis had increased (P = 0.03) plasma 20α-DHP concentration and reduced (P = 0.03) DHP/20α-DHP ratio when compared to control mares. Our results suggest that the early events of ascending placentitis detected by ultrasonographic findings include hormonal alterations of feto-placental metabolism measurable in the mare's circulation, yet without obvious systemic immunological and inflammatory changes. Additional studies are warranted to further assess how hormonal markers and cutoff values could guide decisions for timely therapeutic intervention.

14.
Reprod Sci ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090335

RESUMO

Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.

15.
BMC Plant Biol ; 24(1): 741, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095692

RESUMO

BACKGROUND: Daye No.3 is a novel cultivar of alfalfa (Medicago sativa L.) that is well suited for cultivation in high-altitude regions such as the Qinghai‒Tibet Plateau owing to its high yield and notable cold resistance. However, the limited availability of transcriptomic information has hindered our investigation into the potential mechanisms of cold tolerance in this cultivar. Consequently, we conducted de novo transcriptome assembly to overcome this limitation. Subsequently, we compared the patterns of gene expression in Daye No. 3 during cold acclimatization and exposure to cold stress at various time points. RESULTS: A total of 15 alfalfa samples were included in the transcriptome assembly, resulting in 141.97 Gb of clean bases. A total of 441 DEGs were induced by cold acclimation, while 4525, 5016, and 8056 DEGs were identified at 12 h, 24 h, and 36 h after prolonged cold stress at 4 °C, respectively. The consistency between the RT‒qPCR and transcriptome data confirmed the accuracy and reliability of the transcriptomic data. KEGG enrichment analysis revealed that many genes related to photosynthesis were enriched under cold stress. STEM analysis demonstrated that genes involved in nitrogen metabolism and the TCA cycle were consistently upregulated under cold stress, while genes associated with photosynthesis, particularly antenna protein genes, were downregulated. PPI network analysis revealed that ubiquitination-related ribosomal proteins act as hub genes in response to cold stress. Additionally, the plant hormone signaling pathway was activated under cold stress, suggesting its vital role in the cold stress response of alfalfa. CONCLUSIONS: Ubiquitination-related ribosomal proteins induced by cold acclimation play a crucial role in early cold signal transduction. As hub genes, these ubiquitination-related ribosomal proteins regulate a multitude of downstream genes in response to cold stress. The upregulation of genes related to nitrogen metabolism and the TCA cycle and the activation of the plant hormone signaling pathway contribute to the enhanced cold tolerance of alfalfa.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Medicago sativa , Transcriptoma , Medicago sativa/genética , Medicago sativa/fisiologia , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Aclimatação/genética , Temperatura Baixa , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Int J Womens Health ; 16: 1293-1301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100109

RESUMO

Purpose: To investigate the association between the oxidative balance score (OBS) and endometriosis. Methods: This cross-sectional study used four cycles of the National Health and Nutrition Examination Survey (NHANES) (1999-2000, 2001-2002, 2003-2004, and 2005-2006). OBS involved 16 dietary nutrients and 4 lifestyle factors, including 5 pro-oxidants and 15 anti-oxidants. According to weighted quartiles, the OBS was divided into four categories: < 12.54, 12.54-18.70, 18.71-24.68, and > 24.68. Endometriosis was diagnosed based on a question from the reproductive health questionnaire. Weighted multivariate logistic analysis was used to investigate the association between OBS and endometriosis. Subgroup analysis was performed based on menstrual regularity and female hormone use. Results: A total of 5095 women were included, with 1140 (22.37%), 1232 (24.18%), 1224 (24.02%), and 1499 (29.42%) women in the OBS < 12.54, of 12.54-18.70, of 18.71-24.68, and > 24.68 categories, respectively. After adjusting age, race, family poverty-to-income ratio (PIR), education level, uterine fibroids, menstrual regularity, oophorectomy, female hormone use, hypertension, dyslipidemia, and steroid drug, a high OBS (> 24.68) was found to be associated with lower odds of endometriosis [odds ratio (OR) = 0.70, 95% confidence interval (CI): 0.50-0.97, P = 0.033] compared to a low OBS (< 12.54). The similar result was also found in women with irregular menstruation (OR = 0.58, 95% CI: 0.37-0.91, P = 0.020) and with female hormone use (OR = 0.71, 95% CI: 0.52-0.98, P = 0.037). Conclusion: A high OBS was associated with lower odds of endometriosis, especially in women with irregular menstruation and female hormone use.

18.
Conserv Physiol ; 12(1): coae051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100509

RESUMO

A key driver of the African savannah elephant population decline is the loss of habitat and associated human-elephant conflict. Elephant physiological responses to these pressures, however, are largely unknown. To address this knowledge gap, we evaluated faecal glucocorticoid metabolite (fGCM) concentrations as an indicator of adrenal activity and faecal thyroid metabolite (fT3) concentrations as an indicator of metabolic activity in relation to land use, livestock density, and human landscape modification, while controlling for the effects of seasonality and primary productivity (measured using the normalized difference vegetation index). Our best-fit model found that fGCM concentrations to be elevated during the dry season, in areas with higher human modification index values, and those with more agropastoral activities and livestock. There was also a negative relationship between primary productivity and fGCM concentrations. We found fT3 concentrations to be higher during the wet season, in agropastoral landscapes, in locations with higher human activity, and in areas with no livestock. This study highlights how elephants balance nutritional rewards and risks in foraging decisions when using human-dominated landscapes, results that can serve to better interpret elephant behaviour at the human-wildlife interface and contribute to more insightful conservation strategies.

19.
Conserv Physiol ; 12(1): coae048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100510

RESUMO

Hormone monitoring of at-risk species can be valuable for evaluation of individual physiological status. Traditional non-invasive endocrine monitoring from urine and faeces typically captures only a short window in time, poorly reflecting long-term hormone fluctuations. We examined toenail trimmings collected from African (Loxodonta africana) and Asian (Elephas maximus) elephants during routine foot care, to determine if long-term hormone patterns are preserved in these slow-growing keratinized tissues. We first measured the growth rate of elephant toenails biweekly for one year, to establish the temporal delay between deposition of hormones into nail tissue (at the proximal nail bed) and collection of toenail trimmings months later (at the distal tip of the nail). In African elephants, toenails grew ~0.18 ± 0.015 mm/day (mean ± SEM) and in Asian elephants, toenails grew ~0.24 ± 0.034 mm/day. This slow growth rate, combined with the large toenail size of elephants, may mean that toenails could contain a 'hormone timeline' of over a year between the nail bed and nail tip. Progesterone, testosterone and cortisol were readily detectable using commercial enzyme immunoassays, and all assays passed validations, indicating that these hormones can be accurately quantified in elephant toenail extract. In most cases, variations in hormone concentrations reflected expected physiological patterns for adult females and males (e.g. ovarian cycling and musth) and matched individual health records from participating zoos. Progesterone patterns aligned with our calculations of temporal delay, aligning with female ovarian cycling from over six months prior. Unexpectedly, male testosterone patterns aligned with current musth status at the time of sample collection (i.e. rather than prior musth status). Though this sample type will require further study, these results indicate that preserved hormone patterns in elephant toenails could give conservationists a new tool to aid management of elephant populations.

20.
BMC Endocr Disord ; 24(1): 135, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090659

RESUMO

BACKGROUND: Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS: Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17ß-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS: A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17ß-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17ß-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS: Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.


Assuntos
Hormônios Esteroides Gonadais , Hepatócitos , Metabolismo dos Lipídeos , Humanos , Masculino , Feminino , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , Hormônios Esteroides Gonadais/metabolismo , Células Cultivadas , Pessoa de Meia-Idade , Testosterona/farmacologia , Testosterona/metabolismo , Estradiol/farmacologia , Adulto , Progesterona/farmacologia , Progesterona/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA