Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
mSystems ; 9(5): e0140523, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557130

RESUMO

The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.


Assuntos
Microbioma Gastrointestinal , Redes Reguladoras de Genes , Animais , Microbioma Gastrointestinal/genética , Callithrix/microbiologia , Interações entre Hospedeiro e Microrganismos/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Intestinos/microbiologia , Algoritmos
2.
Metabolites ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535292

RESUMO

Understanding microbial metabolism is crucial for evaluating shifts in human host-microbiome interactions during periods of health and disease. However, the primary hurdle in the realm of constraint-based modeling and genome-scale metabolic models (GEMs) pertaining to host-microbiome interactions lays in the efficient utilization of metagenomic data for constructing GEMs that encompass unexplored and uncharacterized genomes. Challenges persist in effectively employing metagenomic data to address individualized microbial metabolisms to investigate host-microbiome interactions. To tackle this issue, we have created a computational framework designed for personalized microbiome metabolisms. This framework takes into account factors such as microbiome composition, metagenomic species profiles and microbial gene catalogues. Subsequently, it generates GEMs at the microbial level and individualized microbiome metabolisms, including reaction richness, reaction abundance, reactobiome, individualized reaction set enrichment (iRSE), and community models. Using the toolbox, our findings revealed a significant reduction in both reaction richness and GEM richness in individuals with liver cirrhosis. The study highlighted a potential link between the gut microbiota and liver cirrhosis, i.e., increased level of LPS, ammonia production and tyrosine metabolism on liver cirrhosis, emphasizing the importance of microbiome-related factors in liver health.

3.
Ecol Evol ; 13(11): e10666, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915805

RESUMO

Many organisms actively manipulate the environment in ways that feed back on their own development, a process referred to as developmental niche construction. Yet, the role that constructed biotic and abiotic environments play in shaping phenotypic variation and its evolution is insufficiently understood. Here, we assess whether environmental modifications made by developing dung beetles impact the environment-sensitive expression of secondary sexual traits. Gazelle dung beetles both physically modify their ontogenetic environment and structure their biotic interactions through the vertical inheritance of microbial symbionts. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess the degree to which (sym)biotic and physical environmental modifications shape the exaggeration of several traits varying in their degree and direction of sexual dimorphism. We expected the experimental reduction of a larva's ability to shape its environment to affect trait size and scaling, especially for traits that are sexually dimorphic and environmentally plastic. We find that compromised developmental niche construction indeed shapes sexual dimorphism in overall body size and the absolute sizes of male-limited exaggerated head horns, the strongly sexually dimorphic fore tibia length and width, as well as the weakly dimorphic elytron length and width. This suggests that environmental modifications affect sex-specific phenotypic variation in functional traits. However, most of these effects can be attributed to nutrition-dependent plasticity in size and non-isometric trait scaling rather than body-size-independent effects on the developmental regulation of trait size. Our findings suggest that the reciprocal relationship between developing organisms, their symbionts, and their environment can have considerable impacts on sexual dimorphism and functional morphology.

4.
Gut Microbes ; 15(2): 2246184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610102

RESUMO

Opioid crisis is an ongoing epidemic since the past several decades in the United States. Opioid use-associated microbial dysbiosis is emerging as a key regulator of intestinal homeostasis and behavioral responses to opioid. However, the mechanistic insight into the role of microbial community in modulating host response is unavailable. To uncover the role of opioid-induced dysbiosis in disrupting intestinal homeostasis we utilized whole genome sequencing, untargeted metabolomics, and mRNA sequencing to identify changes in microbiome, metabolome, and host transcriptome respectively. Morphine treatment resulted in significant expansion of Parasuterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and depletion of Lactobacillus johnsonii. These changes correlated with alterations in lipid metabolites and flavonoids. Significant alteration in microbial metabolism (metabolism of lipids, amino acids, vitamins and cofactors) and increased expression of virulence factors and biosynthesis of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) were observed in microbiome of morphine-treated animals. In concurrence with changes in microbiome and metabolome extensive changes in innate and adaptive immune response, lipid metabolism, and gut barrier dysfunction were observed in the host transcriptome. Microbiome depleted mice displayed lower levels of inflammation, immune response and tissue destruction compared to mice harboring a dysbiotic microbiome in response to morphine treatment, thus establishing dysbiotic microbiome as mediator of morphine gut pathophysiology. Integrative analysis of multi-omics data highlighted the associations between Parasutterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and altered levels of riboflavin, flavonoids, and lipid metabolites including phosphocholines, carnitines, bile acids, and ethanolamines with host gene expression changes involved in inflammation and barrier integrity of intestine. Omic analysis also highlighted the role of probiotic bacteria Lactobacillus johnsonii, metabolites flavonoids and riboflavin that were depleted with morphine as important factors for intestinal homeostasis. This study presents for the first time ever an interactive view of morphine-induced changes in microbial metabolism, strain level gut microbiome analysis and comprehensive view of changes in gut transcriptome. We also identified areas of potential therapeutic interventions to limit microbial dysbiosis and present a unique resource to the opioid research community.


Assuntos
Microbioma Gastrointestinal , Transtornos Relacionados ao Uso de Opioides , Animais , Camundongos , Analgésicos Opioides , Disbiose/induzido quimicamente , Multiômica , Riboflavina , Derivados da Morfina , Lipídeos
5.
Clin Exp Pediatr ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605538

RESUMO

The microbiome is a complex ecosystem comprising microbes, their genomes, and the surrounding environment. The microbiome plays a critical role in early human development, including maturation of the host immune system and gastrointestinal tract. Multiple factors, including diet, antibiotic use, and other environmental exposures, influence the establishment of the microbiome during infancy. Numerous studies have identified associations between the microbiome and neonatal diseases, including necrotizing enterocolitis, sepsis, and malnutrition. Furthermore, there is compelling evidence that perturbation of the microbiome in early life can have lasting developmental effects that increase an individual's risk for immune and metabolic diseases in later life. Supplementation of the microbiome with probiotics reduces the risk of necrotizing enterocolitis and sepsis in at-risk infants. This review focuses on the structure and function of the infant microbiome, the environmental and clinical factors that influence its assembly, and its impact on infant health and development.

6.
7.
Nutrients ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771414

RESUMO

The development and health of infants are intertwined with the protective and regulatory functions of different microorganisms in the gut known as the gut microbiota. Preterm infants born with an imbalanced gut microbiota are at substantial risk of several diseases including inflammatory intestinal diseases, necrotizing enterocolitis, late-onset sepsis, neurodevelopmental disorders, and allergies which can potentially persist throughout adulthood. In this review, we have evaluated the role of Bifidobacterium as commonly used probiotics in the development of gut microbiota and prevention of common diseases in preterm infants which is not fully understood yet. The application of Bifidobacterium as a therapeutical approach in the re-programming of the gut microbiota in preterm infants, the mechanisms of host-microbiome interaction, and the mechanism of action of this bacterium have also been investigated, aiming to provide new insights and opportunities in microbiome-targeted interventions in personalized medicine.


Assuntos
Enterocolite Necrosante , Microbioma Gastrointestinal , Probióticos , Sepse , Lactente , Recém-Nascido , Humanos , Adulto , Recém-Nascido Prematuro , Bifidobacterium , Sepse/prevenção & controle , Probióticos/uso terapêutico , Enterocolite Necrosante/prevenção & controle , Enterocolite Necrosante/microbiologia
8.
Evol Appl ; 16(2): 365-378, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793697

RESUMO

Microbes can play a prominent role in the evolution of their hosts, facilitating adaptation to various environments and promoting ecological divergence. The Wave and Crab ecotypes of the intertidal snail Littorina saxatilis is an evolutionary model of rapid and repeated adaptation to environmental gradients. While patterns of genomic divergence of the Littorina ecotypes along the shore gradients have been extensively studied, their microbiomes have been so far overlooked. The aim of the present study is to start filling this gap by comparing gut microbiome composition of the Wave and Crab ecotypes using metabarcoding approach. Since Littorina snails are micro-grazers feeding on the intertidal biofilm, we also compare biofilm composition (i.e. typical snail diet) in the crab and wave habitats. In the results, we found that bacterial and eukaryotic biofilm composition varies between the typical habitats of the ecotypes. Further, the snail gut bacteriome was different from outer environments, being dominated by Gammaproteobacteria, Fusobacteria, Bacteroidia and Alphaproteobacteria. There were clear differences in the gut bacterial communities between the Crab and the Wave ecotypes as well as between the Wave ecotype snails from the low and high shores. These differences were both observed in the abundances and in the presence of different bacteria, as well as at different taxonomic level, from bacterial OTU's to families. Altogether, our first insights show that Littorina snails and their associated bacteria are a promising marine system to study co-evolution of the microbes and their hosts, which can help us to predict the future for wild species in the face of rapidly changing marine environments.

9.
Mol Ecol ; 32(3): 703-723, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36326449

RESUMO

Microbes can modify their hosts' stress tolerance, thus potentially enhancing their ecological range. An example of such interactions is Ectocarpus subulatus, one of the few freshwater-tolerant brown algae. This tolerance is partially due to its (un)cultivated microbiome. We investigated this phenomenon by modifying the microbiome of laboratory-grown E. subulatus using mild antibiotic treatments, which affected its ability to grow in low salinity. Low salinity acclimation of these algal-bacterial associations was then compared. Salinity significantly impacted bacterial and viral gene expression, albeit in different ways across algal-bacterial communities. In contrast, gene expression of the host and metabolite profiles were affected almost exclusively in the freshwater-intolerant algal-bacterial communities. We found no evidence of bacterial protein production that would directly improve algal stress tolerance. However, vitamin K synthesis is one possible bacterial service missing specifically in freshwater-intolerant cultures in low salinity. In this condition, we also observed a relative increase in bacterial transcriptomic activity and the induction of microbial genes involved in the biosynthesis of the autoinducer AI-1, a quorum-sensing regulator. This could have resulted in dysbiosis by causing a shift in bacterial behaviour in the intolerant algal-bacterial community. Together, these results provide two promising hypotheses to be examined by future targeted experiments. Although they apply only to the specific study system, they offer an example of how bacteria may impact their host's stress response.


Assuntos
Interações entre Hospedeiro e Microrganismos , Phaeophyceae , Aclimatação/fisiologia , Simbiose , Água Doce , Phaeophyceae/genética , Phaeophyceae/microbiologia
10.
Mol Ecol ; 32(23): 6644-6658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125236

RESUMO

The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.


Assuntos
Microbiota , Vespas , Wolbachia , Animais , Vespas/genética , Vespas/microbiologia , Wolbachia/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Geografia
11.
Cells ; 11(19)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36231116

RESUMO

Childhood asthma is a major chronic non-communicable disease in infants and children, often triggered by respiratory tract infections. The nasal cavity is a reservoir for a broad variety of commensal microbes and potential pathogens associated with respiratory illnesses including asthma. A healthy nasal microenvironment has protective effects against respiratory tract infections. The first microbial colonisation in the nasal region is initiated immediately after birth. Subsequently, colonisation by nasal microbiota during infancy plays important roles in rapidly establishing immune homeostasis and the development and maturation of the immune system. Dysbiosis of microbiota residing in the mucosal surfaces, such as the nasopharynx and guts, triggers immune modulation, severe infection, and exacerbation events. Nasal microbiome dysbiosis is related to the onset of symptomatic infections. Dynamic interactions between viral infections and the nasal microbiota in early life affect the later development of respiratory infections. In this review, we summarise the existing findings related to nasal microbiota colonisation, dynamic variations, and host-microbiome interactions in childhood health and respiratory illness with a particular examination of asthma. We also discuss our current understanding of biases produced by environmental factors and technical concerns, the importance of standardised research methods, and microbiome modification for the prevention or treatment of childhood asthma. This review lays the groundwork for paying attention to an essential but less emphasized topic and improves the understanding of the overall composition, dynamic changes, and influence of the nasal microbiome associated with childhood asthma.


Assuntos
Asma , Microbiota , Infecções Respiratórias , Criança , Disbiose , Humanos , Lactente , Sistema Respiratório
12.
J Assist Reprod Genet ; 39(9): 2169-2178, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35881269

RESUMO

AIM: To learn about the interaction between endometrial microbiota and host gene regulation in recurrent implantation failure. METHODS: The endometrial microbiota of 111 patients (RIF, 75; CON, 36) was analyzed by using 16 s rRNA sequencing technology. Transcriptome sequencing analysis of the endometrial of 60 patients was performed by using high-throughput sequencing. RESULTS: We found that the structure and composition of endometrium microbiota community of RIF patients were significantly different from those in control group. The abnormality of microbial structure and composition might interfere with the implantation of embryos by affecting the immune adaptation of the endometrium and the formation of endometrial blood vessels. CONCLUSIONS: Our research described the host-microbe interaction in RIF. The structure and composition of endometrium microbiota community of RIF patients were significantly different from those in CON group. The abnormality of microbial structure and composition might interfere with the implantation of embryos by affecting the immune adaptation of the endometrium and the formation of endometrial blood vessels.


Assuntos
Endométrio , Microbiota , Implantação do Embrião/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Microbiota/genética
13.
Front Microbiol ; 13: 916735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733965

RESUMO

The Qinghai-Tibetan Plateau offers one of the most extreme environments for yaks (Bos grunniens). Although the genetic adaptability of yak and rumen metagenomes is increasingly understood, the relative contribution of host genetics and maternal symbiotic microbes throughout early intestinal microbial successions in yaks remains elusive. In this study, we assessed the intestinal microbiota succession of co-inhabiting yak and cattle (Bos taurus) calves at different weeks after birth as well as the modes of transmission of maternal symbiotic microbes (i.e., rumen fluid, feces, oral cavity, and breast skin) to their calves' intestinal microbiota colonization. We found that the fecal microbiota of yak and cattle calves after birth was dominated by members of the families Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae. The Source Tracker model revealed that maternal fecal microbes played an important role (the average contribution was about 80%) in the intestinal microbial colonization of yak and cattle calves at different weeks after birth. Unlike cattle calves, there was no significant difference in the fecal microbiota composition of yak calves between 5 and 9 weeks after birth (Wilcoxon test, P > 0.05), indicating that yak may adapt to its natural extreme environment to stabilize its intestinal microbiota composition. Additionally, our results also find that the intestinal microbial composition of yak and cattle calves, with age, gradually tend to become similar, and the differences between species gradually decrease. The findings of this study are vital for developing strategies to manipulate the intestinal microbiota in grazing yaks and cattle for better growth and performance on the Qinghai-Tibetan Plateau.

14.
Gut Microbes ; 14(1): 2063016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446234

RESUMO

To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS), several modalities of biological and clinical data must be combined. We aimed to identify profiles of fecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Fecal metabolites were measured using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gut microbiome using shotgun metagenomic sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HCs) with extensive clinical, biological and phenotype information. Data were analyzed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on fecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal (GI) symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavorable stress response related to GI symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Microbiota , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos , Síndrome do Intestino Irritável/metabolismo , Metaboloma , Serotonina/metabolismo
15.
Front Cell Infect Microbiol ; 12: 1043971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741975

RESUMO

Background and aims: Surgical site infection is a common complication after surgery. Periprocedural antibiotics are necessary to prescribe for preventing or treating infections. The present study aimed to explore the effect of intravenous antibiotics on gut microbiota and menaquinone biosynthesis in patients, especially in elderly patients undergoing cardiac surgery. Methods: A total of 388 fecal samples were collected from 154 cardiac surgery patients. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced on a MiSeq PE300. The gut microbiota diversity of samples was analyzed in terms of α- and ß-diversity at the OTU level. The different groups were classified according to antibiotics in combinations and single antibiotics. PICRUSt2 was used for preliminary prediction of the gut microbiota function for menaquinone biosynthesis. Results: The intravenously administered antibiotics which are excreted via bile represents the main antibiotics that could disturb the gut microbiota's composition in cardiac surgery patients, especially for elderly patients. The effect of antibiotics on gut microbiota is produced after antibiotics treatments over one week. The recovery of gut microbiota to the state of pre-antibiotics may require over two weeks of antibiotics withdrawal. Sex factor doesn't represent as an influencer in gut microbiota composition. Long-term use of cefoperazone-sulbactam may affect coagulation function. Conclusions: The composition of the gut microbiota had a significant change post-intravenous antibiotics treatment in cardiac surgery patients. The richness and diversity of gut microbiota are increased in elderly patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Microbioma Gastrointestinal , Humanos , Idoso , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Vitamina K 2/farmacologia , Fezes/microbiologia
16.
Biotechnol Genet Eng Rev ; 37(2): 105-153, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34678130

RESUMO

Every individual harbours a complex, diverse and mutualistic microbial flora in their intestine and over the time it became an integral part of the body, affecting a plethora of activities of the host. Interaction between host and gut-microbiota affects several aspects of host physiology. Gut-microbiota affects host metabolism by fermenting unabsorbed/undigested carbohydrates in the large intestine. Not only the metabolic functions, any disturbances in the composition of the gut-microbiota during first 2-3 years of life may impact on the brain development and later affects cognition and behaviour. Thus, gut-dysbiosis causes certain serious pathological conditions in the host including metabolic disorders, inflammatory bowel disease and mood alterations, etc. Microbial-metabolites in recent times have emerged as key mediators and are responsible for microbiota induced beneficial effects on host. This review provides an overview of the mechanism of microbial-metabolite production, their respective physiological functions and the impact of gut-microbiome in health and diseases. Metabolites from dietary fibres, aromatic amino acids such as tryptophan, primary bile acids and others are the potential substances and link microbiota to host physiology. Many of these metabolites act as signalling molecules to a number of cells types and also help in the secretion of hormones. Moreover, interaction of microbiota derived metabolites with their host, immunity boosting mechanisms, protection against pathogens and modulation of metabolism is also highlighted here. Understanding all these functional attributes of metabolites produced from gut-microbiota may lead to the opening of a new avenue for preventing and developing potent therapies against several diseases.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Ácidos e Sais Biliares , Disbiose , Humanos
17.
Front Cell Infect Microbiol ; 11: 733619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604114

RESUMO

The microbiome of the female genital tract (FGT) is closely linked to reproductive health outcomes. Diverse, anaerobe-dominated communities with low Lactobacillus abundance are associated with a number of adverse reproductive outcomes, such as preterm birth, cervical dysplasia, and sexually transmitted infections (STIs), including HIV. Vaginal dysbiosis is associated with local mucosal inflammation, which likely serves as a biological mediator of poor reproductive outcomes. Yet the precise mechanisms of this FGT inflammation remain unclear. Studies in humans have been complicated by confounding demographic, behavioral, and clinical variables. Specifically, hormonal contraception is associated both with changes in the vaginal microbiome and with mucosal inflammation. In this study, we examined the transcriptional landscape of cervical cell populations in a cohort of South African women with differing vaginal microbial community types. We also investigate effects of reproductive hormones on the transcriptional profiles of cervical cells, focusing on the contraceptive depot medroxyprogesterone acetate (DMPA), the most common form of contraception in sub-Saharan Africa. We found that antigen presenting cells (APCs) are key mediators of microbiome associated FGT inflammation. We also found that DMPA is associated with significant transcriptional changes across multiple cell lineages, with some shared and some distinct pathways compared to the inflammatory signature seen with dysbiosis. These results highlight the importance of an integrated, systems-level approach to understanding host-microbe interactions, with an appreciation for important variables, such as reproductive hormones, in the complex system of the FGT mucosa.


Assuntos
Infecções por HIV , Microbiota , Nascimento Prematuro , Células Apresentadoras de Antígenos , Feminino , Contracepção Hormonal , Humanos , Recém-Nascido , Inflamação , Gravidez , Vagina
18.
Ecol Evol ; 11(17): 12129-12140, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522365

RESUMO

This study aimed to identify the effects of host species on the gut microbial flora in three species (Hemitragus jemlahicus, Pseudois nayaur, and Ovis orientalis) from the subfamily Caprinae, by excluding the impact of environment factors. We investigated the differences in intestinal flora of three species belonging to Caprinae, which were raised in identical conditions. Fecal samples were collected from tahr, mouflon, and bharal, and the V3-V4 region of the 16S ribosomal RNA gene was analyzed by high-throughput sequencing. The analysis of 16S rRNA gene sequences reveals that fecal samples were mainly composed of four phyla: Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria. The most abundant phyla included Firmicutes and Bacteroidetes accounting for >90% of the bacteria, and a higher Firmicutes/Bacteroidetes ratio was observed in tahrs. Moreover, significant differences existed at multiple levels of classifications in the relative abundance of intestinal flora, differing greatly between species. Phylogenetic analyses based on 16S rRNA gene indicated that mouflon is closely related to bharal, and it is inconsistent with previous reports in the species evolutionary relationships. In this study, we demonstrated that the gut microbiota in tahr had a stronger ability to absorb and store energy from the diet compared with mouflon and bharal, and the characteristics of host-microbiome interactions were not significant.

19.
BMC Genomics ; 22(1): 364, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011272

RESUMO

BACKGROUND: A healthy microbiome influences host physiology through a mutualistic relationship, which can be important for the host to cope with cellular stress by promoting fitness and survival. The mammalian microbiome is highly complex and attributing host phenotypes to a specific member of the microbiome can be difficult. The model organism Caenorhabditis elegans and its native microbiome, discovered recently, can serve as a more tractable, experimental model system to study host-microbiome interactions. In this study, we investigated whether certain members of C. elegans native microbiome would offer a benefit to their host and putative molecular mechanisms using a combination of phenotype screening, omics profiling and functional validation. RESULTS: A total of 16 members of C. elegans microbiome were screened under chemically-induced toxicity. Worms grown with Chryseobacterium sp. CHNTR56 MYb120 or Comamonas sp. 12022 MYb131, were most resistant to oxidative chemical stress (SiO2 nanoparticles and juglone), as measured by progeny output. Further investigation showed that Chryseobacterium sp. CHNTR56 positively influenced the worm's lifespan, whereas the combination of both isolates had a synergistic effect. RNAseq analysis of young adult worms, grown with either isolate, revealed the enrichment of cellular detoxification mechanisms (glutathione metabolism, drug metabolism and metabolism of xenobiotics) and signaling pathways (TGF-beta and Wnt signaling pathways). Upregulation of cysteine synthases (cysl genes) in the worms, associated with glutathione metabolism, was also observed. Nanopore sequencing uncovered that the genomes of the two isolates have evolved to favor the specific route of the de novo synthesis pathway of vitamin B6 (cofactor of cysl enzymes) through serC or pdxA2 homologs. Finally, co-culture with vitamin B6 extended worm lifespan. CONCLUSIONS: In summary, our study indicates that certain colonizing members of C. elegans have genomic diversity in vitamin B6 synthesis and promote host fitness and lifespan extension. The regulation of host cellular detoxification genes (i.e. gst) along with cysl genes at the transcriptome level and the bacterium-specific vitamin B6 synthesis mechanism at the genome level are in an agreement with enhanced host glutathione-based cellular detoxification due to this interspecies relationship. C. elegans is therefore a promising alternative model to study host-microbiome interactions in host fitness and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Microbiota , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade , Estresse Oxidativo , Dióxido de Silício
20.
Microbiome ; 9(1): 22, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482907

RESUMO

BACKGROUND: Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses. RESULTS: The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix (among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident upon treatment with the mixed community, but either not detected or less pronounced in treatments by single microorganisms, underscoring the impact that a diverse skin microbiome has on the host. CONCLUSIONS: This work contributes to the understanding of how microbiome constituents individually and collectively influence human skin processes and properties. The results show that, while it is important to understand the effect of individual microbes on the host, a full community of microbes has unique and pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum of its parts. Video abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Pele/microbiologia , Proteínas Filagrinas , Perfilação da Expressão Gênica , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Microbiota/genética , Fenômenos Fisiológicos da Pele/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA