Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Pharmaceutics ; 16(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339274

RESUMO

Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates CDK7-controlled transcriptional initiation through inactivating cyclin H phosphorylation. Recently, these combined properties of CDK8 have also suggested its rate-limiting importance for herpesviral replication. Objectives. In this paper, we focused on human cytomegalovirus (HCMV) and addressed the question of whether the pharmacological inhibition or knock-down of CDK8 may affect viral replication efficiency in cell culture models. Methods. A number of human and animal herpesviruses, as well as non-herpesviruses, were used to analyze the importance of CDK8 for viral replication in cell culture models, and to assess the antiviral efficacy of CDK8 inhibitors. Results. Using clinically relevant CDK8 inhibitors (CCT-251921, MSC-2530818, and BI-1347), HCMV replication was found strongly reduced even at nanomolar drug concentrations. The EC50 values were consistent for three different HCMV strains (i.e., AD169, TB40, and Merlin) analyzed in two human cell types (i.e., primary fibroblasts and astrocytoma cells), and the drugs comprised a low level of cytotoxicity. The findings highlighted the following: (i) the pronounced in vitro SI values of anti-HCMV activity obtained with CDK8 inhibitors; (ii) a confirmation of the anti-HCMV efficacy by CDK8-siRNA knock-down; (iii) a CDK8-dependent reduction in viral immediate early, early, and late protein levels; (iv) a main importance of CDK8 for viral late-stage replication; (v) several mechanistic aspects, which point to a strong impact on viral progeny production and release, but a lack of CDK8 relevance for viral entry or nuclear egress; (vi) a significant anti-HCMV drug synergy for combinations of inhibitors against host CDK8 and the viral kinase vCDK/pUL97 (maribavir); (vii) finally, a broad-spectrum antiviral activity, as seen for the comparison of selected α-, ß-, γ-, and non-herpesviruses. Conclusions. In summary, these novel data provide evidence for the importance of CDK8 as a positive regulator of herpesviral replication efficiency, and moreover, suggest its exploitability as an antiviral target for novel strategies of host-directed drug development.

2.
Virol Sin ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153545

RESUMO

Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans. Therefore, most of the in vivo researches of HCMV rely on clinical samples. Fortunately, the establishment of humanized mouse models allows for convenient in-lab animal experiments involving HCMV infection. Single-cell RNA sequencing enables the study of the relationship between viral and host gene expressions at the single-cell level within host cells. In this study, we assessed the gene expression alterations of PBMCs at the single-cell level within HCMV-infected humanized mice, which sheds light onto the virus-host interactions in the context of HCMV infection of humanized mice and provides a valuable dataset for the related researches.

3.
Pathogens ; 13(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39204245

RESUMO

Human cytomegalovirus (HCMV) represents a highly medically important pathogen which has constantly been the subject of both molecular and clinical investigations. HCMV infections, especially those in high-risk patients, still raise many unanswered questions, so current investigations are focused on viral pathogenesis, vaccine development, and options for antiviral drug targeting. To this end, the use of suitable viral strains as well as recombinant reporter constructs in cultured cells and model systems has specific significance. We previously reported on the application of various herpesviruses that express green, red, or related fluorescent proteins, especially in the fields of virus-host interaction and antiviral research. Here, we characterized a recombinant version of the clinically relevant and cell type-adaptable HCMV strain TB40, which expresses firefly luciferase as a quantitative reporter of viral replication (TB40-FLuc). The data provide evidence for five main conclusions. First, HCMV TB40-FLuc is employable in multiple settings in primary human cells. Second, viral reporter signals are easily quantifiable, even at early time points within viral replication. Third, the FLuc reporter reflects the kinetics of viral intracellular replication, cascade-like viral IE-E-L protein production, and progeny release. Fourth, as relates to specific applications of the TB40-FLuc system, we demonstrated the reliability of quantitative antiviral compound determination in multi-well formats and its independence from fluorescence-based measurements in the case of autofluorescent inhibitors. Finally, we illustrated increased reporter sensitivity in comparison to other recombinant HCMVs. In essence, recombinant HCMV TB40-FLuc combines several molecular properties that are considered beneficial in studies on viral host tropism, replication efficiency, and antiviral drug assessment.

4.
Microorganisms ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065122

RESUMO

In the setting of infectious diseases, antibodies show different functions beyond neutralizing activity. In this study, we investigated the activation of NK cells in vitro in the presence of human cytomegalovirus (HCMV)-specific antibodies and their potential role in the control of HCMV infection through antibody-dependent cell cytotoxicity (ADCC). Retinal pigmented epithelial cells (ARPE-19) infected with the HCMV strain VR1814 were co-cultured with cytokine-activated peripheral blood mononuclear cells (PBMCs) in the presence of sera collected from 23 HCMV-seropositive and 9 HCMV-seronegative donors. Moreover, 13 pregnant women sampled 3 and 6 months after HCMV primary infection and 13 pregnant women with pre-conception immunity were tested and compared. We determined the percentage of activated NK cells via the analysis of CD107a expression as a marker of degranulation. Significantly higher levels of NK-cell activation were observed using 1/100 and 1/10 dilutions of sera from HCMV-seropositive individuals, and when cells were infected for 96 and 120 h, suggesting that NK cells are activated by antibodies directed against late antigens. In the absence of serum NK cells, activation was negligible. In seropositive subjects, the median percentages of CD107a-positive NK cells in the presence of autologous serum and pooled HCMV-positive serum were similar (14.03% [range 0.00-33.56] and 12.42% [range 1.01-46.00], respectively), while NK-cell activation was negligible using an HCMV-negative serum pool. In HCMV-seronegative subjects, the median percentage of activated NK cells was 0.90% [range 0.00-3.92] with autologous serum and 2.07% [0.00-5.76] in the presence of the HCMV-negative serum pool, while it was 8.97% [0.00-26.49] with the pool of HCMV-positive sera. NK-cell activation using hyperimmune globulin is comparable to what is obtained using autologous serum. Sera from subjects at 3 and 6 months post primary infection showed a lower capacity of NK-cell activation than sera from subjects with past infection (p < 0.001). NK activation against HCMV-infected epithelial cells is dependent on the presence of HCMV-specific antibodies. This serum activity increases with time after the onset of HCMV infection. The protective role of NK-cell activation by HCMV-specific serum antibodies should be verified in clinical settings.

5.
mBio ; 15(7): e0119124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829126

RESUMO

Human cytomegalovirus (HCMV), a widely prevalent human beta-herpesvirus, establishes lifelong persistence in the host following primary infection. In healthy individuals, the virus is effectively controlled by HCMV-specific T cells and typically exhibits asymptomatic. The T cell immune response plays a pivotal role in combating HCMV infection, while HCMV employs various strategies to counteract it within the host. Previously, we reported that UL23, a tegument protein of HCMV, facilitates viral immune evasion from interferon-gamma (IFN-γ) responses, and it is well known that IFN-γ is mainly derived from T cells. However, the involvement of UL23 in viral immune evasion from T cell-mediated immunity remains unclear. Herein, we present compelling evidence that UL23 significantly enhances viral resistance against T cell-mediated cytotoxicity during HCMV infection from the co-culture assays of HCMV-infected cells with T cells. We found that IFN-γ plays a major role in regulating T cell cytotoxicity mediated by UL23. More interestingly, we demonstrated that UL23 not only regulates the IFN-γ downstream responses but also modulates the IFN-γ secretion by regulating T cell activities. Further experiments indicate that UL23 upregulates the expression and signaling of programmed death ligand 1 (PD-L1), which is responsible for inhibiting multiple aspects of T cell activities, including activation, apoptosis, and IFN-γ secretion, as determined through RNA-seq analysis and inhibitor-blocking experiments, ultimately facilitating viral replication and spread. Our findings highlight the potential role of UL23 as an alternative antagonist in suppressing T cell cytotoxicity and unveil a novel strategy for HCMV to evade T cell immunity. IMPORTANCE: T cell immunity is pivotal in controlling primary human cytomegalovirus (HCMV) infection, restricting periodic reactivation, and preventing HCMV-associated diseases. Despite inducing a robust T cell immune response, HCMV has developed sophisticated immune evasion mechanisms that specifically target T cell responses. Although numerous studies have been conducted on HCMV-specific T cells, the primary focus has been on the impact of HCMV on T cell recognition via major histocompatibility complex molecules. Our studies show for the first time that HCMV exploits the programmed death ligand 1 (PD-L1) inhibitory signaling pathway to evade T cell immunity by modulating the activities of T cells and thereby blocking the secretion of IFN-γ, which is directly mediated by HCMV-encoded tegument protein UL23. While PD-L1 has been extensively studied in the context of tumors and viruses, its involvement in HCMV infection and viral immune evasion is rarely reported. We observed an upregulation of PD-L1 in normal cells during HCMV infection and provided strong evidence supporting its critical role in UL23-induced inhibition of T cell-mediated cytotoxicity. The novel strategy employed by HCMV to manipulate the inhibitory signaling pathway of T cell immune activation for viral evasion through its encoded protein offers valuable insights for the understanding of HCMV-mediated T cell immunomodulation and developing innovative antiviral treatment strategies.


Assuntos
Antígeno B7-H1 , Infecções por Citomegalovirus , Citomegalovirus , Evasão da Resposta Imune , Interferon gama , Transdução de Sinais , Humanos , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/genética
6.
Pathogens ; 13(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38787269

RESUMO

A common infection, human cytomegalovirus (HCMV) has been associated with a variety of human diseases, including cardiovascular disease and possibly certain cancers. HCMV has also been associated with cognitive, psychiatric, and neurological conditions. Children with congenital or early-life HCMV are at risk for microcephaly, cerebral palsy, and sensorineural hearing loss, although in many cases sensorineural loss may resolve. In addition, HCMV can be associated with neurodevelopmental impairment, which may improve with time. In young, middle-aged, and older adults, HCMV has been adversely associated with cognitive function in some but not in all studies. Research has linked HCMV to Alzheimer's and vascular dementia, but again not all findings consistently support these associations. In addition, HCMV has been associated with depressive disorder, bipolar disorder, anxiety, and autism-spectrum disorder, although the available findings are likewise inconsistent. Given associations between HCMV and a variety of neurocognitive and neuropsychiatric disorders, additional research investigating reasons for the considerable inconsistencies in the currently available findings is needed. Additional meta-analyses and more longitudinal studies are needed as well. Research into the effects of antiviral medication on cognitive and neurological outcomes and continued efforts in vaccine development have potential to lower the neurocognitive, neuropsychiatric, and neurological burden of HCMV infection.

7.
Virus Res ; 345: 199375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642618

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has posed significant challenges to global health. While much attention has been directed towards understanding the primary mechanisms of SARS-CoV-2 infection, emerging evidence suggests co-infections or superinfections with other viruses may contribute to increased morbidity and mortality, particularly in severe cases of COVID-19. Among viruses that have been reported in patients with SARS-CoV-2, seropositivity for Human cytomegalovirus (HCMV) is associated with increased COVID-19 risk and hospitalization. HCMV is a ubiquitous beta-herpesvirus with a seroprevalence of 60-90 % worldwide and one of the leading causes of mortality in immunocompromised individuals. The primary sites of latency for HCMV include CD14+ monocytes and CD34+ hematopoietic cells. In this study, we sought to investigate SARS-CoV-2 infection of CD14+ monocytes latently infected with HCMV. We demonstrate that CD14+ cells are susceptible and permissive to SARS-CoV-2 infection and detect subgenomic transcripts indicative of replication. To further investigate the molecular changes triggered by SARS-CoV-2 infection in HCMV-latent CD14+ monocytes, we conducted RNA sequencing coupled with bioinformatic differential gene analysis. The results revealed significant differences in cytokine-cytokine receptor interactions and inflammatory pathways in cells superinfected with replication-competent SARS-CoV-2 compared to the heat-inactivated and mock controls. Notably, there was a significant upregulation in transcripts associated with pro-inflammatory response factors and a decrease in anti-inflammatory factors. Taken together, these findings provide a basis for the heightened inflammatory response, offering potential avenues for targeted therapeutic interventions among HCMV-infected severe cases of COVID-19. SUMMARY: COVID-19 patients infected with secondary viruses have been associated with a higher prevalence of severe symptoms. Individuals seropositive for human cytomegalovirus (HCMV) infection are at an increased risk for severe COVID-19 disease and hospitalization. HCMV reactivation has been reported in severe COVID-19 cases with respiratory failure and could be the result of co-infection with SARS-CoV-2 and HCMV. In a cell culture model of superinfection, HCMV has previously been shown to increase infection of SARS-CoV-2 of epithelial cells by upregulating the human angiotensin-converting enzyme-2 (ACE2) receptor. In this study, we utilize CD14+ monocytes, a major cell type that harbors latent HCMV, to investigate co-infection of SARS-CoV-2 and HCMV. This study is a first step toward understanding the mechanism that may facilitate increased COVID-19 disease severity in patients infected with SARS-CoV-2 and HCMV.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Citomegalovirus , Receptores de Lipopolissacarídeos , Monócitos , SARS-CoV-2 , Superinfecção , Humanos , Monócitos/virologia , Monócitos/imunologia , Citomegalovirus/imunologia , Receptores de Lipopolissacarídeos/metabolismo , SARS-CoV-2/imunologia , COVID-19/virologia , COVID-19/imunologia , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Superinfecção/virologia , Superinfecção/imunologia , Latência Viral , Inflamação , Coinfecção/virologia , Citocinas/metabolismo , Replicação Viral
8.
EMBO Rep ; 25(3): 1106-1129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308064

RESUMO

Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-ß family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNß, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNß response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNß. HCMV lacking US18 and US20 is more sensitive to IFNß. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.


Assuntos
Fator 2 de Diferenciação de Crescimento , Imunidade Inata , Humanos , Citocinas/metabolismo , Citomegalovirus/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Transdução de Sinais
9.
Int Rev Immunol ; 43(4): 197-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164951

RESUMO

Human cytomegalovirus (HCMV) is a representative ß-herpesvirus that establishes persistent infections in humans, and exhibits high seropositivity rates in adults. It has co-evolved with its human host and employs various strategies to evade antiviral mechanisms by utilizing a significant portion of its genome. HCMV-encoded proteins and miRNAs have been implicated in regulating these mechanisms, enabling viral survival within the human body. During viral infections, autophagy, a conserved catabolic process essential for cellular homeostasis, acts as an antiviral defense mechanism. Multiple studies have reported that HCMV can modulate autophagy through its proteins and miRNAs, thereby influencing its survival within the host. In this study, we showed the potential involvement of HCMV miRNAs in cellular autophagy. We employed various bioinformatic tools to predict putative HCMV miRNAs that target autophagy-related genes and their corresponding cellular autophagy genes. Our results show that the 3'UTR of autophagy-related genes, including ATG9A, ATG9B, ATG16L2, SQSTM1, and EIF2AK2, harbors potential binding sites for hcmv-miR-UL70-3p. Experimental manipulation involving ectopic expression of hcmv-miR-UL70-3p demonstrated a significant reduction in rapamycin-induced autophagy, with ATG9A as its functional target. These findings establish that hcmv-miR-UL70-3p acts as an autophagy inhibitor by suppressing the expression of ATG9A.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Infecções por Citomegalovirus , Citomegalovirus , MicroRNAs , Sirolimo , Autofagia/genética , Humanos , MicroRNAs/genética , Citomegalovirus/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Sirolimo/farmacologia , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Regiões 3' não Traduzidas/genética , RNA Viral/genética , RNA Viral/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Linhagem Celular , Proteínas de Membrana
10.
Mol Neurobiol ; 61(3): 1331-1345, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37700217

RESUMO

    Although multiple factors are known to concur with Alzheimer's disease (AD), the relationship between human cytomegalovirus (HCMV) and AD-like disease is unclear. Here, we propose a hypothesis that HCMV immediate-early 2 (IE2) protein promotes microglia activation and thus leads to AD-like disease. We successfully constructed IE2 transgenic mice expressing IE2 in the hippocampus. Single-cell sequencing analysis revealed that IE2 promoted the activation of microglia and upregulated the expression of disease-associated microglia genes. Differentially expressed gene analysis and pathway enrichment revealed that IE2 upregulated immune and nervous system disease-related genes. Immunohistochemical analysis showed that the expressions of both amyloid precursor protein (APP) and p-Tau were significantly upregulated in the brains of IE2 mice and were markers of AD. Taken together, these findings provide useful insights into AD-like disease activated by HCMV IE2.


Assuntos
Doença de Alzheimer , Proteínas Imediatamente Precoces , Humanos , Camundongos , Animais , Camundongos Transgênicos , Microglia/metabolismo , Doença de Alzheimer/genética , Transativadores/metabolismo , Citomegalovirus , Perfilação da Expressão Gênica , Análise de Sequência de RNA
11.
Cancers (Basel) ; 15(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136285

RESUMO

The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.

12.
Pharmaceutics ; 15(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38140021

RESUMO

Despite the availability of currently approved antiviral drugs, infections with human cytomegalovirus (HCMV) still cause clinically challenging, sometimes life-threatening situations. There is an urgent need for enhanced anti-HCMV drugs that offer improved efficacy, reduced dosages and options for long-term treatment without risk of the development of viral drug resistance. Recently, we reported the pronounced anti-HCMV efficacy of pharmacological inhibitors of cyclin-dependent kinases (CDKs), in particular, the potential of utilizing drug synergies upon combination treatment with inhibitors of host CDKs and the viral CDK-like kinase pUL97 (vCDK/pUL97). Here, we expand this finding by further assessing the in vitro synergistic antiviral interaction between vCDK and CDK inhibitors towards HCMV as well as non-human cytomegaloviruses. An extension of this synergy approach was achieved in vivo by using the recombinant MCMV-UL97/mouse model, confirming the high potential of combination treatment with the clinically approved vCDK inhibitor maribavir (MBV) and the developmental CDK7 inhibitor LDC4297. Moreover, mechanistic aspects of this synergistic drug combination were illustrated on the levels of intracellular viral protein transport and viral genome replication. The analysis of viral drug resistance did not reveal resistance formation in the case of MBV + LDC4297 combination treatment. Spanning various investigational levels, these new results strongly support our concept, employing the great potential of anti-HCMV synergistic drug treatment.

13.
Front Immunol ; 14: 1170300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600801

RESUMO

Human cytomegalovirus (HCMV) is a prototypical ß-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways. While both TNF receptors engage NFκB signaling, only the nearly ubiquitously expressed TNFR1 exhibits a death domain that mediates TRADD/FADD-dependent caspase activation. Under steady-state conditions, TNFR2 expression is mainly restricted to immune cells where it predominantly submits pro-survival, proliferation-stimulating, and immune-regulatory signals. Based on the observation that HCMV-infected cells show enhanced binding of TNFα, we explored the interplay between HCMV and TNFR2. As expected, uninfected fibroblasts did not show detectable levels of TNFR2 on the surface. Intriguingly, however, HCMV infection increased TNFR2 surface levels of fibroblasts. Using HCMV variants and BACmid-derived clones either harboring or lacking the ULb' region, an association between TNFR2 upregulation and the presence of the ULb' genome region became evident. Applying a comprehensive set of ULb' gene block and single gene deletion mutants, we observed that HCMV mutants in which the non-adjacent genes UL148 or UL148D had been deleted show an impaired ability to upregulate TNFR2, coinciding with an inverse regulation of TACE/ADAM17.


Assuntos
Citomegalovirus , Receptores Tipo II do Fator de Necrose Tumoral , Proteínas Virais de Fusão , Humanos , Citomegalovirus/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
14.
SAR QSAR Environ Res ; 34(7): 523-541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424376

RESUMO

QSAR studies of a set of previously synthesized azole derivatives tested against human cytomegalovirus (HCMV) were performed using the OCHEM web platform. The predictive ability of the classification models has a balanced accuracy (BA) of 73-79%. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds with a reasonable accuracy within the applicability domain (BA = 76-83%). The models were applied to screen a virtual chemical library with expected activity of compounds against HCMV. The five most promising new compounds were identified, synthesized and their antiviral activities against HCMV were evaluated in vitro. Two of them showed some activity against the HCMV strain AD169. According to the results of docking analysis, the most promising biotarget associated with HCMV is DNA polymerase. The docking of the most active compounds 1 and 5 in the DNA polymerase active site shows calculated binding energies of -8.6 and -7.8 kcal/mol, respectively. The ligand's complexation was stabilized by the formation of hydrogen bonds and hydrophobic interactions with amino acids Lys60, Leu43, Ile49, Pro77, Asp134, Ile135, Val136, Thr62 and Arg137.


Assuntos
Citomegalovirus , Oxazóis , Humanos , Citomegalovirus/genética , Tiazóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Antivirais/farmacologia , Antivirais/química , DNA Polimerase Dirigida por DNA
15.
Front Immunol ; 14: 1148841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234158

RESUMO

Introduction: Human cytomegalovirus (HCMV) causes significant morbidity and mortality in allogeneic stem cell transplant (alloSCT) recipients. Recently, antiviral letermovir prophylaxis during the first 100 days after alloSCT replaced PCR-guided preemptive therapy as the primary standard of care for HCMV reactivations. Here, we compared NK-cell and T-cell reconstitution in alloSCT recipients receiving preemptive therapy or letermovir prophylaxis in order to identify potential biomarkers predicting prolonged and symptomatic HCMV reactivation. Methods: To that end, the NK-cell and T-cell repertoire of alloSCT recipients managed with preemptive therapy (n=32) or letermovir prophylaxis (n=24) was characterized by flow cytometry on days +30, +60, +90 and +120 after alloSCT. Additionally, background-corrected HCMV-specific T-helper (CD4+IFNγ+) and cytotoxic (CD8+IFNγ+CD107a+) T cells were quantified after pp65 stimulation. Results: Compared to preemptive therapy, letermovir prophylaxis prevented HCMV reactivation and decreased HCMV peak viral loads until days +120 and +365. Letermovir prophylaxis resulted in decreased T-cell numbers but increased NK-cell numbers. Interestingly, despite the inhibition of HCMV, we found high numbers of "memory-like" (CD56dimFcεRIγ- and/or CD159c+) NK cells and an expansion of HCMV-specific CD4+ and CD8+ T cells in letermovir recipients. We further compared immunological readouts in patients on letermovir prophylaxis with non/short-term HCMV reactivation (NSTR) and prolonged/symptomatic HCMV reactivation (long-term HCMV reactivation, LTR). Median HCMV-specific CD4+ T-cell frequencies were significantly higher in NSTR patients (day +60, 0.35 % vs. 0.00 % CD4+IFNγ+/CD4+ cells, p=0.018) than in patients with LTR, whereas patients with LTR had significantly higher median regulatory T-cell (Treg) frequencies (day +90, 2.2 % vs. 6.2 % CD4+CD25+CD127dim/CD4+ cells, p=0.019). ROC analysis confirmed low HCMV specific CD4+ (AUC on day +60: 0.813, p=0.019) and high Treg frequencies (AUC on day +90: 0.847, p=0.021) as significant predictors of prolonged and symptomatic HCMV reactivation. Discussion: Taken together, letermovir prophylaxis delays HCMV reactivation and alters NK- and T-cell reconstitution. High numbers of HCMV-specific CD4+ T cells and low numbers of Tregs seem to be pivotal to suppress post-alloSCT HCMV reactivation during letermovir prophylaxis. Administration of more advanced immunoassays that include Treg signature cytokines might contribute to the identification of patients at high-risk for long-term and symptomatic HCMV reactivation who might benefit from prolonged administration of letermovir.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Citomegalovirus , Linfócitos T CD4-Positivos , Transplante de Células-Tronco , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
16.
Viruses ; 15(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112911

RESUMO

Human Cytomegalovirus Capsid Assembly Protein Precursor (pAP, UL80.5) plays a key role in capsid assembly by forming an internal protein scaffold with Major Capsid Protein (MCP, UL86) and other capsid subunits. In this study, we revealed UL80.5 as a novel SUMOylated viral protein. We confirmed that UL80.5 interacted with the SUMO E2 ligase UBC9 (58-93aa) and could be covalently modified by SUMO1/SUMO2/SUMO3 proteins. 371Lysine located within a ψKxE consensus motif on UL80.5 carboxy-terminal was the major SUMOylation site. Interestingly, the SUMOylation of UL80.5 restrained its interaction with UL86 but had no effects on translocating UL86 into the nucleus. Furthermore, we showed that the removal of the 371lysine SUMOylation site of UL80.5 inhibited viral replication. In conclusion, our data demonstrates that SUMOylation plays an important role in regulating UL80.5 functions and viral replication.


Assuntos
Proteínas do Capsídeo , Capsídeo , Humanos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Citomegalovirus/metabolismo , Sumoilação , Lisina/metabolismo , Proteínas Virais/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Replicação Viral , Precursores de Proteínas
17.
Front Cell Infect Microbiol ; 12: 980974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452301

RESUMO

Circular RNA (circRNA) exists extensively and plays essential roles in serving as microRNA (miRNA) or protein sponges and protein scaffolding in many organisms. However, the profiles and potential functions of the virus-encoded circRNA, including human cytomegalovirus (HCMV)-encoded circular RNAs, remain unclear. In the present study, HCMV-encoded circRNAs profile in human embryonic lung fibroblasts (HELF) with lytic infection was investigated using RNA deep sequencing and bioinformatics analysis. In total, 629 HCMV-encoded circRNAs were identified with various expression patterns in our results. The full sequences and alternative splicings of circUS12, circUL55, and circUL89 were verified by reverse transcriptase-PCR (RT-PCR) with divergent primers followed and Sanger sequencing. Transcription of circUL89 was validated by Northern blot. The HCMV-encoded circRNA-miRNA network analyses revealed the potential function of HCMV-encoded circRNAs during HCMV infection in HELFs. Collectively, HCMV infection deduced abundant HCMV-associated circRNAs during infection, and the HCMV-encoded circRNAs might play important roles in benefiting HCMV infection.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , Citomegalovirus/genética , MicroRNAs/genética , Análise de Sequência de RNA , Processamento Alternativo , RNA Viral/genética
18.
Pathogens ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36558866

RESUMO

HCMV-specific CD8+ T-cells are potent anti-viral effector cells in HCMV infected individuals, but evidence from other viral infections suggests that CD8+ T-cells can also produce the immunomodulatory cytokine IL-10. In this work we show that there are HCMV-specific IL-10 CD8+ T-cell responses in a cohort of individuals aged 23-76 years of age, predominantly directed against the HCMV proteins known to be expressed during latent infections as well as towards the proteins US3 and pp71. The analysis of HCMV-specific responses established during primary infection has shown that the IL-10 responses to US3 and pp71 HCMV proteins are detectable in the first weeks post infection, but not the responses to latency-associated proteins, and this IL-10 response is produced by both CD8+ and CD4+ T-cells. Phenotyping studies of HCMV-specific IL-10+ CD8+ T-cells show that these are CD45RA+ effector memory cells and co-express CD28 and CD57, however, the expression of the inhibitory receptor PD-1 varied from 90% to 30% between donors. In this study we have described for the first time the HCMV-specific IL-10 CD8+ T-cell responses and have demonstrated their broad specificity and the potential immune modulatory role of the immune response to HCMV latent carriage and periodic reactivation.

19.
Virusdisease ; 33(4): 383-396, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447815

RESUMO

This report has analyzed the potential role of Human Cytomegalovirus (HCMV) UL24 and UL43 products in modulating the subcellular location of a host restriction factor, SAMHD1, in cells of human fibroblast origin. Recent studies have reported that the regulation of SAMHD1 is mediated by the HCMV UL97 product inside the nucleus, and by the CDK pathway when it is located in the cytoplasm of the infected cells but the viral gene products that may involve in cytosolic relocalization remain unknown yet. In the present report, we demonstrate that the HCMV UL24 product interacts with the SAMHD1 protein during infection based on mass spectrometry (MS) data and immunoprecipitation assay. The expression or depletion of the viral UL24 gene product did not affect the subcellular localization of SAMHD1 but when it coexpressed with the viral UL43 gene product, another member of the HCMV US22 family, induced the SAMHD1 cytosolic relocalization. Interestingly, the double deletion of viral UL24 and UL43 gene products impaired the cytosolic translocation and the SAMHD1 was accumulated in the nucleus of the infected cells, especially at the late stage post-infection. Our results provide evidence that the viral UL24 and UL43 gene products play a role in the SAMHD1 subcellular localization during HCMV infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-022-00799-3.

20.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430369

RESUMO

Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Herpesviridae/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Herpesvirus Humano 3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA