Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
Biomaterials ; 313: 122770, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226653

RESUMO

Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Polímeros , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Polímeros/química , Orientação de Axônios , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Propriedades de Superfície , Condutividade Elétrica , Fatores de Crescimento Neural/metabolismo , Axônios/metabolismo , Axônios/fisiologia
2.
Regen Ther ; 26: 850-858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39430581

RESUMO

Introduction: Platelet-rich plasma obtained by centrifuging peripheral blood can promote osteogenesis owing to its abundant growth factors but has drawbacks, including rapid growth factor loss and inconsistent effects depending on donor factors. To overcome these issues, we were the first in the world to use freeze-dried human induced pluripotent stem cell-derived megakaryocytes and platelets (S-FD-iMPs) and found that they have osteogenesis-promoting effects. Since turbulence was found to activate platelet biogenesis and iPS cell-derived platelets can now be produced on a clinical scale by a device called VerMES, this study examined the osteogenesis-promoting effect and safety of clinical-scale FD-iMP (V-FD-iMPs) for future human clinical application. Method: We administered either S-FD-iMPs, V-FD-iMPs, or saline along with artificial bone to the lumbar spine of 8-week-old male Sprague-Dawley rats (n = 4 each) and evaluated bone formation by computed tomography (CT) and pathology. Next, we administered V-FD-iMPs or saline along with artificial bone to the lumber spines of 5-week-old male New Zealand White rabbits (n = 4 each) and evaluated the bone formation by CT and pathology. Rats (n = 10) and rabbits (n = 6) that received artificial bone and V-FD-iMPs in the lumbar spine were also observed for 6 months for adverse events, including infection, tumor formation, and death. Results: Both V-FD-iMPs and S-FD-iMPs significantly enhanced osteogenesis in the lumber spines of rats in comparison with the controls 8 weeks postoperatively, with no significant differences between them. Furthermore, V-FD-iMPs vigorously promoted osteogenesis in the lumber spines of rabbits 8 weeks postoperatively. In rats and rabbits, V-FD-iMPs showed no adverse effects, including infection, tumor formation, and death, over 6 months. Conclusion: These results suggest that V-FD-iMPs promote safe osteogenesis.

3.
Protein Cell ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363875

RESUMO

Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC) -derived skin organoids combining with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5ß1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.

4.
Int Immunopharmacol ; 143(Pt 2): 113378, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39423657

RESUMO

Mutations in genes coding sarcomere components are the major causes of human inherited cardiomyopathy. Genome editing is widely applied to genetic modification of human pluripotent stem cells (hPSCs) before hPSCs were differentiated into cardiomyocytes to model cardiomyopathy. Whether genetic mutations influence the early hPSC differentiation process or solely the terminally differentiated cardiomyocytes during cardiac pathogenesis remains challenging to distinguish. To solve this problem, here we harnessed chemically modified mRNA (modRNA) and synthetic single-guide RNA to develop an efficient genome editing approach in hPSC-derived cardiomyocytes (hPSC-CMs). We showed that modRNA-based CRISPR/Cas9 mutagenesis of TNNT2, the coding gene for cardiac troponin T, results in sarcomere disassembly and contractile dysfunction in hPSC-CMs. These structural and functional phenotypes were associated with profound downregulation of oxidative phosphorylation genes and upregulation of cardiac stress markers NPPA and NPPB. These data confirmed that sarcomeres regulate gene expression in hPSC-CMs and highlighted the RNA technology as a powerful tool to achieve stage-specific genome editing during hPSC differentiation.

5.
Elife ; 132024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331464

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is commonly found in persons living with HIV (PLWH) even when antiretroviral therapy suppresses HIV viremia. However, studying this condition has been challenging because an appropriate animal model is not available. In this article, we studied calcium transient in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in culture to simulate the cardiomyocyte relaxation defect noted in PLWH and HFpEF and assess whether various drugs have an effect. We show that treatment of hiPSC-CMs with inflammatory cytokines (such as interferon-γ or TNF-α) impairs their Ca2+ uptake into sarcoplasmic reticulum and that SGLT2 inhibitors, clinically proven as effective for HFpEF, reverse this effect. Additionally, treatment with mitochondrial antioxidants (like mito-Tempo) and certain antiretrovirals resulted in the reversal of the effects of these cytokines on calcium transient. Finally, incubation of hiPSC-CMs with serum from HIV patients with and without diastolic dysfunction did not alter their Ca2+-decay time, indicating that the exposure to the serum of these patients is not sufficient to induce the decrease in Ca2+ uptake in vitro. Together, our results indicate that hiPSC-CMs can be used as a model to study molecular mechanisms of inflammation-mediated abnormal cardiomyocyte relaxation and screen for potential new interventions.


Assuntos
Cálcio , Células-Tronco Pluripotentes Induzidas , Inflamação , Miócitos Cardíacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Infecções por HIV/metabolismo , Insuficiência Cardíaca/metabolismo , Células Cultivadas
6.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273573

RESUMO

Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.


Assuntos
Hipóxia Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Diferenciação Celular , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Células Cultivadas
7.
Stem Cell Res Ther ; 15(1): 226, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075623

RESUMO

BACKGROUND: B-cell CLL/lymphoma 6 member B (BCL6B) operates as a sequence-specific transcriptional repressor within the nucleus, playing crucial roles in various biological functions, including tumor suppression, immune response, stem cell self-renew, and vascular angiogenesis. However, whether BCL6B is involved in endothelial cell (EC) development has remained largely unknown. ETS variant transcription factor 2 (ETV2) is well known to facilitate EC differentiation. This study aims to determine the important role of BCL6B in EC differentiation and its potential mechanisms. METHODS: Doxycycline-inducible human induced pluripotent stem cell (hiPSC) lines with BCL6B overexpression or BCL6B knockdown were established and subjected to differentiate into ECs and vessel organoids (VOs). RNA sequencing analysis was performed to identify potential signal pathways regulated by BCL6B during EC differentiation from hiPSCs. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pluripotency and vascular-specific marker genes expression. EC differentiation efficiency was determined by Flow cytometry analysis. The performance of EC was evaluated by in vitro Tube formation assay. The protein expression and the vessel-like structures were assessed using immunofluorescence analysis or western blot. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP)-PCR analysis were used to determine the regulatory relationship between BCL6B and ETV2. RESULTS: Functional ECs and VOs were successfully generated from hiPSCs. Notably, overexpression of BCL6B suppressed while knockdown of BCL6B improved EC differentiation from hiPSCs. Additionally, the overexpression of BCL6B attenuated the capacity of derived hiPSC-ECs to form a tubular structure. Furthermore, compared to the control VOs, BCL6B overexpression repressed the growth of VOs, whereas BCL6B knockdown had little effect on the size of VOs. RNA sequencing analysis confirmed that our differentiation protocol induced landscape changes for cell/tissue/system developmental process, particularly vascular development and tube morphogenesis, which were significantly modulated by BCL6B. Subsequent experiments confirmed the inhibitory effect of BCL6B is facilitated by the binding of BCL6B to the promoter region of ETV2, led to the suppression of ETV2's transcriptional activity. Importantly, the inhibitory effect of BCL6B overexpression on EC differentiation from hiPSCs could be rescued by ETV2 overexpression. CONCLUSIONS: BCL6B inhibits EC differentiation and hinders VO development by repressing the transcriptional activity of ETV2.


Assuntos
Diferenciação Celular , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Basic Res Cardiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992300

RESUMO

Propionic acidemia (PA), arising from PCCA or PCCB variants, manifests as life-threatening cardiomyopathy and arrhythmias, with unclear pathophysiology. In this work, propionyl-CoA metabolism in rodent hearts and human pluripotent stem cell-derived cardiomyocytes was investigated with stable isotope tracing analysis. Surprisingly, gut microbiome-derived propionate rather than the propiogenic amino acids (valine, isoleucine, threonine, and methionine) or odd-chain fatty acids was found to be the primary cardiac propionyl-CoA source. In a Pcca-/-(A138T) mouse model and PA patients, accumulated propionyl-CoA and diminished acyl-CoA synthetase short-chain family member 3 impede hepatic propionate disposal, elevating circulating propionate. Prolonged propionate exposure induced significant oxidative stress in PCCA knockdown HL-1 cells and the hearts of Pcca-/-(A138T) mice. Additionally, Pcca-/-(A138T) mice exhibited mild diastolic dysfunction after the propionate challenge. These findings suggest that elevated circulating propionate may cause oxidative damage and functional impairment in the hearts of patients with PA.

10.
Cells ; 13(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39056771

RESUMO

Genetic or hereditary kidney disease stands as a pivotal cause of chronic kidney disease (CKD). The proliferation and widespread utilization of DNA testing in clinical settings have notably eased the diagnosis of genetic kidney diseases, which were once elusive but are now increasingly identified in cases previously deemed CKD of unknown etiology. However, despite these diagnostic strides, research into disease pathogenesis and novel drug development faces significant hurdles, chiefly due to the dearth of appropriate animal models and the challenges posed by limited patient cohorts in clinical studies. Conversely, the advent and utilization of human-induced pluripotent stem cells (hiPSCs) offer a promising avenue for genetic kidney disease research. Particularly, the development of hiPSC-derived kidney organoid systems presents a novel platform for investigating various forms of genetic kidney diseases. Moreover, the integration of the CRISPR/Cas9 technique into this system holds immense potential for efficient research on genetic kidney diseases. This review aims to explore the applications of in vitro kidney organoids generated from hiPSCs in the study of diverse genetic kidney diseases. Additionally, it will delve into the limitations of this research platform and outline future perspectives for advancing research in this crucial area.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nefropatias , Rim , Organoides , Humanos , Organoides/patologia , Organoides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , Animais , Sistemas CRISPR-Cas/genética
11.
Stem Cell Res Ther ; 15(1): 191, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956608

RESUMO

BACKGROUND: Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS: Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS: Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION: This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.


Assuntos
Reatores Biológicos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Agregação Celular/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Diferenciação Celular
12.
Biomedicines ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39062047

RESUMO

Obesity is a complex medical condition caused by a positive imbalance between calorie intake and calorie consumption. Brown adipose tissue (BAT), along with the newly discovered "brown-like" adipocytes (called beige cells), functions as a promising therapeutic tool to ameliorate obesity and metabolic disorders by burning out extra nutrients in the form of heat. Many studies in animal models and humans have proved the feasibility of this concept. In this review, we aim to summarize the endeavors over the last decade to achieve a higher number/activity of these heat-generating adipocytes. In particular, pharmacological compounds, especially agonists to the ß3 adrenergic receptor (ß3-AR), are reviewed in terms of their feasibility and efficacy in elevating BAT function and improving metabolic parameters in human subjects. Alternatively, allograft transplantation of BAT and the transplantation of functional brown or beige adipocytes from mesenchymal stromal cells or human induced pluripotent stem cells (hiPSCs) make it possible to increase the number of these beneficial adipocytes in patients. However, practical and ethical issues still need to be considered before the therapy can eventually be applied in the clinical setting. This review provides insights and guidance on brown- and beige-cell-based strategies for the management of obesity and its associated metabolic comorbidities.

13.
Tissue Eng Part A ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38970444

RESUMO

Tracheal cartilage provides structural support to the airways to enable breathing. However, it can become damaged or impaired, sometimes requiring surgical resection and reconstruction. Previously, we clinically applied an artificial trachea composed of a polypropylene mesh and collagen sponge, with a favorable postoperative course. However, the artificial trachea presents a limitation, as the mesh is not biodegradable and cannot be used in pediatric patients. Compared to a polypropylene mesh, regenerated cartilage represents an ideal material for reconstruction of the damaged trachea. The use of mesenchymal stem cells (MSCs) as a source for cartilage regeneration has gained widespread acceptance, but challenges such as the invasiveness of harvesting and limited cell supply persist. Therefore, we focused on the potential of human-induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) for tracheal cartilage regeneration. In this study, we aimed to regenerate tracheal cartilage on an artificial trachea as a preliminary step to replace the polypropylene mesh. iMSCs were induced from hiPSCs through neural crest cells and transplanted with a polypropylene mesh covered with a collagen sponge into the damaged tracheal cartilage in immunodeficient rats. Human nuclear antigen (HNA)-positive cells were observed in all six rats at 4 weeks and in six out of seven rats at 12 weeks after transplantation, indicating that transplanted iMSCs survived within the tracheal cartilage defects of rats. The HNA-positive cells coexpressed SOX9, and type II collagen was detected around HNA-positive cells in four of six rats at 4 weeks and in three of seven rats at 12 weeks after transplantation, reflecting cartilage-like tissue regeneration. These results indicate that the transplanted iMSCs could differentiate into chondrogenic cells and promote tracheal cartilage regeneration. iMSC transplantation thus represents a promising approach for human tracheal reconstruction.

14.
Curr Protoc ; 4(7): e1101, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980221

RESUMO

Cardiovascular diseases have emerged as one of the leading causes of human mortality, but the discovery of new drugs has been hindered by the absence of suitable in vitro platforms. In recent decades, continuously refined protocols for differentiating human induced pluripotent stem cells (hiPSCs) into hiPSC-derived cardiomyocytes (hiPSC-CMs) have significantly advanced disease modeling and drug screening; however, this has led to an increasing need to monitor the function of hiPSC-CMs. The precise regulation of action potentials (APs) and intracellular calcium (Ca2+) transients is critical for proper excitation-contraction coupling and cardiomyocyte function. These important parameters are usually adversely affected in cardiovascular diseases or under cardiotoxic conditions and can be measured using optical imaging-based techniques. However, this procedure is complex and technologically challenging. We have adapted the IonOptix system to simultaneously measure APs and Ca2+ transients in hiPSC-CMs loaded with the fluorescent dyes FluoVolt and Rhod 2, respectively. This system serves as a powerful high-throughput platform to facilitate the discovery of new compounds to treat cardiovascular diseases with the cellular phenotypes of abnormal APs and Ca2+ handling. Here, we present a comprehensive protocol for hiPSC-CM preparation, device setup, optical imaging, and data analysis. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Maintenance and seeding of hiPSC-CMs Basic Protocol 2: Simultaneous detection of action potentials and Ca2+ transients in hiPSC-CMs.


Assuntos
Potenciais de Ação , Cálcio , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Imagem Óptica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Cálcio/metabolismo , Imagem Óptica/métodos , Diferenciação Celular/efeitos dos fármacos
15.
Front Physiol ; 15: 1395923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911328

RESUMO

Introduction: Pulsed Field Ablation (PFA) is a novel non-thermal method for cardiac ablation, relying on irreversible electroporation induced by high-energy pulsed electric fields (PEFs) to create localized lesions in the heart atria. A significant challenge in optimizing PFA treatments is determining the lethal electric field threshold (EFT), which governs ablation volume and varies with PEF waveform parameters. However, the proprietary nature of device developer's waveform characteristics and the lack of standardized nonclinical testing methods have left optimal EFTs for cardiac ablation uncertain. Methods: To address this gap, we introduced a laboratory protocol employing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in monolayer format to evaluate the impact of a range of clinically relevant biphasic pulse parameters on lethal EFT and adiabatic heating (AH). Cell death areas were assessed using fluorescent dyes and confocal microscopy, while lethal EFTs were quantified through comparison with electric field numerical simulations. Results and conclusion: Our study confirmed a strong correlation between cell death in hiPSC-CMs and the number and duration of pulses in each train, with pulse repetition frequency exerting a comparatively weaker influence. Fitting of these results through machine learning algorithms were used to develop an open-source online calculator. By estimating lethal EFT and associated temperature increases for diverse pulse parameter combinations, this tool, once validated, has the potential to significantly reduce reliance on animal models during early-stage device de-risking and performance assessment. This tool also offers a promising avenue for advancing PFA technology for cardiac ablation medical devices to enhance patient outcomes.

16.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892161

RESUMO

Males and females exhibit intrinsic differences in the structure and function of the heart, while the prevalence and severity of cardiovascular disease vary in the two sexes. However, the mechanisms of this sex-based dimorphism are yet to be elucidated. Sex chromosomes and sex hormones are the main contributors to sex-based differences in cardiac physiology and pathophysiology. In recent years, the advances in induced pluripotent stem cell-derived cardiac models and multi-omic approaches have enabled a more comprehensive understanding of the sex-specific differences in the human heart. Here, we provide an overview of the roles of these two factors throughout cardiac development and explore the sex hormone signaling pathways involved. We will also discuss how the employment of stem cell-based cardiac models and single-cell RNA sequencing help us further investigate sex differences in healthy and diseased hearts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Feminino , Masculino , Caracteres Sexuais , Hormônios Esteroides Gonadais/metabolismo , Diferenciação Celular , Animais , Coração/fisiologia , Cromossomos Sexuais/genética , Transdução de Sinais
17.
Mater Today Bio ; 26: 101111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38933413

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) are ideal candidates for the production of standardised and scalable bioengineered bone grafts. However, stable induction and osteogenic differentiation of iMSCs pose challenges in the industry. We developed a precise differentiation method to produce homogeneous and fully differentiated iMSCs. In this study, we established a standardised system to prepare iMSCs with increased osteogenic potential and improved bioactivity by introducing a CHIR99021 (C91)-treated osteogenic microenvironment (COOME). COOME enhances the osteogenic differentiation and mineralisation of iMSCs via canonical Wnt signalling. Global transcriptome analysis and co-culturing experiments indicated that COOME increased the pro-angiogenesis/neurogenesis activity of iMSCs. The superior osteogenic differentiation and mineralisation abilities of COOME-treated iMSCs were also confirmed in a Bio3D module generated using a polycaprolactone (PCL) and cell-integrated 3D printing (PCI3D) system, which is the closest model to in vivo research. This COOME-treated iMSCs differentiation system offers a new perspective for generating highly osteogenic, bioactive, and anatomically matched grafts for clinical applications. Statement of significance: Although human induced pluripotent stem cell-derived MSCs (iMSCs) are ideal seed cells for synthetic bone implants, the challenges of stable induction and osteogenic differentiation hinder their clinical application. This study established a standardised system for the scalable preparation of iMSCs with improved osteogenic potential by combining our precise iMSC differentiation method with the CHIR99021 (C91)-treated osteocyte osteogenic microenvironment (COOME) through the activation of canonical Wnt signalling. Moreover, COOME upregulated the pro-angiogenic and pro-neurogenic capacities of iMSCs, which are crucial for the integration of implanted bone grafts. The superior osteogenic ability of COOME-treated iMSCs was confirmed in Bio3D modules generated using PCL and cell-integrated 3D printing systems, highlighting their functional potential in vivo. This study contributes to tissue engineering by providing insights into the functional differentiation of iMSCs for bone regeneration.

18.
Exp Neurol ; 379: 114848, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857749

RESUMO

The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.


Assuntos
Encéfalo , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Encéfalo/citologia , Camundongos , Diferenciação Celular/fisiologia , Quimera , Modelos Animais de Doenças , Encefalopatias/terapia
19.
Stem Cell Res ; 78: 103453, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824800

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a cardiomyopathy that is predominantly inherited and characterized by cardiac arrhythmias and structural abnormalities. TMEM43 (transmembrane protein 43) is one of the well-known genetic culprits behind ACM. In this study, we successfully generated an induced pluripotent stem cell (iPSC) line, YCMi010-A, derived from a male patient diagnosed with ACM. Although these iPSCs harbored a heterozygous intronic splice variant, TMEM43 c.443-2A > G, they still displayed normal cellular morphology and were confirmed to express pluripotency markers. YCMi010-A iPSC line is a promising model for investigating the pathomechanisms associated with ACM and exploring potential therapeutic strategies.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Proteínas de Membrana , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Linhagem Celular , Adulto , Sítios de Splice de RNA/genética , Diferenciação Celular
20.
Artigo em Inglês | MEDLINE | ID: mdl-38818583

RESUMO

Alcoholic liver disease (ALD) poses a significant health challenge, so comprehensive research efforts to improve our understanding and treatment strategies are needed. However, the development of effective treatments is hindered by the limitation of existing liver disease models. Liver organoids, characterized by their cellular complexity and three-dimensional (3D) tissue structure closely resembling the human liver, hold promise as ideal models for liver disease research. In this study, we use a meticulously designed protocol involving the differentiation of human induced pluripotent stem cells (hiPSCs) into liver organoids. This process incorporates a precise combination of cytokines and small molecule compounds within a 3D culture system to guide the differentiation process. Subsequently, these differentiated liver organoids are subject to ethanol treatment to induce ALD, thus establishing a disease model. A rigorous assessment through a series of experiments reveals that this model partially recapitulates key pathological features observed in clinical ALD, including cellular mitochondrial damage, elevated cellular reactive oxygen species (ROS) levels, fatty liver, and hepatocyte necrosis. In addition, this model offers potential use in screening drugs for ALD treatment. Overall, the liver organoid model of ALD, which is derived from hiPSC differentiation, has emerged as an invaluable platform for advancing our understanding and management of ALD in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA