RESUMO
Background/Objectives: 3'-Sialyllactose (3'-SL), a human milk oligosaccharide, has anti-inflammatory effects and is demonstrated to have protective effects against osteoarthritis (OA) in vitro and in vivo. However, this hypothesis remains to be investigated in a clinical setting. Herein, we investigated the effects of 3'-SL on pain and physical function in patients with knee OA. Methods: Sixty patients with knee OA with Kellgren and Lawrence grades (KL-grades) 1-4 and Korean Western Ontario and McMaster Universities Osteoarthritis Index (KWOMAC) scores ≥30 were randomly assigned to the placebo (n = 20), 3'-SL 200 mg (n = 20), and 3'-SL 600 mg (n = 20) groups. For 12 weeks, 3'-SL or placebo was administered to patients once a day. Clinical efficacy was evaluated using a visual analog scale (VAS) for pain and KWOMAC for physical function at baseline and at 6 and 12 weeks. Adverse effects were assessed for 12 weeks. Results: Significant reductions in VAS and KWOMAC scores were observed at 12 weeks compared with the baseline in the 3'-SL group. No severe adverse effects were observed over 12 weeks. Conclusions: 3'-SL reduced pain in patients with knee OA, improved daily life movements, and was safe, suggesting that 3'-SL might be an effective treatment for knee OA without severe side effects.
Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Masculino , Feminino , Projetos Piloto , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Lactose/análogos & derivados , Método Duplo-Cego , Medição da Dor , OligossacarídeosRESUMO
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains. We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16] HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple adult donors, all segments of the small intestine from an adult organ donor and in two pediatric duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had significantly lower expression of α1-2-fucosylated glycans. 2'FL can be synthesized in large scale, and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the potential to be developed as a therapeutic for HuNoV gastroenteritis.
RESUMO
BACKGROUND: α-l-Fucose confers unique functions for fucose-containing biomolecules such as human milk oligosaccharides. α-l-Fucosidases can serve as desirable tools in the application of fucosylated saccharides. Discovering novel α-l-fucosidases and elucidating their enzyme properties are always worthy tasks. RESULTS: A GH95 family α-l-fucosidase named Afc95A_Wf was cloned from the genome of the marine bacterium Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It exhibited maximum activity at 40 °C and pH 7.5. Afc95A_Wf defined a different substrate specificity among reported α-l-fucosidases, which was capable of hydrolyzing α-fucoside in CNP-fucose, Fucα1-2Galß1-4Glc and Galß1-4(Fucα1-3)Glc, and showed a preference for α1,2-fucosidic linkage. It adopted Asp residue in the amino acid sequence at position 391, which was distinct from the previously acknowledged residue of Asn. The predicted tertiary structure and site-directed mutagenesis revealed that Asp391 participates in the catalysis of Afc95A_Wf. The differences in the substrate specificity and catalytic site shed light on that Afc95A_Wf adopted a novel mechanism in catalysis. CONCLUSION: A GH95 family α-l-fucosidase (Afc95A_Wf) was cloned and expressed. It showed a cleavage preference for α1,2-fucosidic linkage to α1,3-fucosidic linkage. Afc95A_Wf demonstrated a different substrate specificity and a residue at an important catalytic site compared with known GH95 family proteins, which revealed the occurrence of diversity on catalytic mechanisms in the GH95 family. © 2024 Society of Chemical Industry.
Assuntos
Proteínas de Bactérias , Domínio Catalítico , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/química , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/enzimologia , Flavobacteriaceae/genética , Sequência de Aminoácidos , Cinética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Fucose/metabolismo , Fucose/química , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genéticaRESUMO
Bifidobacteria are the predominant bacteria in the infant gut and have beneficial effects on host physiology. Infant cohort studies have demonstrated that a higher abundance of bifidobacteria in the gut is associated with a reduced risk of disease. Recently, bifidobacteria-derived metabolites, such as organic acid, have been suggested to play crucial roles in host physiology. This review focuses on an investigation of longitudinal changes in the gut microbiota and organic acid concentrations over 2â years of life in 12 Japanese infants and aims to identify bifidobacteria that contribute to the production of organic acid in healthy infants. Acetate, lactate, and formate, which are rarely observed in adults, are characteristically observed during breast-fed infancy. Bifidobacterium longum subspecies infantis and the symbiosis of Bifidobacterium bifidum and Bifidobacterium breve efficiently produce these organic acids through metabolization of human milk oligosaccharide (HMO) with different strategies. These findings confirmed that HMO-utilizing bifidobacteria play an important role in regulating the gut organic acid profiles of infants.
RESUMO
Observational evidence suggests that human milk oligosaccharides (HMOs) promote the growth of commensal bacteria in early life and adulthood. However, the mechanisms by which HMOs benefit health through modulation of gut microbial homeostasis remain largely unknown. 2'-fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and contributes to the essential health benefits associated with human milk consumption. Here, we investigated how 2'-FL prevents colitis in adulthood through its effects on the gut microbial community. We found that the gut microbiota from adult mice that consumed 2'-FL exhibited an increase in abundance of several health-associated genera, including Bifidobacterium and Lactobacillus. The 2'-FL-modulated gut microbial community exerted preventive effects on colitis in adult mice. By using Bifidobacterium infantis as a 2'-FL-consuming bacterial model, exploratory metabolomics revealed novel 2'-FL-enriched secretory metabolites by Bifidobacterium infantis, including pantothenol. Importantly, pantothenate significantly protected the intestinal barrier against oxidative stress and mitigated colitis in adult mice. Furthermore, microbial metabolic pathway analysis identified 26 dysregulated metabolic pathways in fecal microbiota from patients with ulcerative colitis, which were significantly regulated by 2'-FL treatment in adult mice, indicating that 2'-FL has the potential to rectify dysregulated microbial metabolism in colitis. These findings support the contribution of the 2'-FL-shaped gut microbial community and bacterial metabolite production to the protection of intestinal integrity and prevention of intestinal inflammation in adulthood.IMPORTANCEAt present, neither basic research nor clinical studies have revealed the exact biological functions or mechanisms of action of individual oligosaccharides during development or in adulthood. Thus, it remains largely unknown whether human milk oligosaccharides could serve as effective therapeutics for gastrointestinal-related diseases. Results from the present study uncover 2'-FL-driven alterations in bacterial metabolism and identify novel B. infantis-secreted metabolites following the consumption of 2'-FL, including pantothenol. This work further demonstrates a previously unrecognized role of pantothenate in significantly protecting the intestinal barrier against oxidative stress and mitigating colitis in adult mice. Remarkably, 2'-FL-enhanced bacterial metabolic pathways are found to be dysregulated in the fecal microbiota of ulcerative colitis patients. These novel metabolic pathways underlying the bioactivities of 2'-FL may lay a foundation for applying individual oligosaccharides for prophylactic intervention for diseases associated with impaired intestinal homeostasis.
Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Ácido Pantotênico/análogos & derivados , Adulto , Humanos , Animais , Camundongos , Leite Humano , Colite Ulcerativa/metabolismo , Oligossacarídeos/metabolismo , Colite/prevenção & controle , InflamaçãoRESUMO
Natural components of breast milk, human milk oligosaccharides (HMOs) and osteopontin (OPN) have been shown to have a variety of functional activities and are widely used in infant formulas. However, the preventive and therapeutic effects of both on influenza viruses are not known. In this study, antiviral assays using a human laryngeal carcinoma cell line (HEP-2) showed that 3'-sialyllactose (3'-SL) and OPN had the best antiviral ability with IC50 values of 33.46 µM and 1.65 µM, respectively. 3'-SL (10 µM) and OPN (4 µM) were used in combination to achieve 75% inhibition. Further studies found that the combination of 200 µg/mL of 3'-SL with 500 µg/mL of OPN exerted the best antiviral ability. The reason for this was related to reduced levels of the cytokines TNF-α, IL-6, and iNOS in relation to mRNA expression. Plaque assay and TCID50 assay found the same results and verified synergistic effects. Our research indicates that a combination of 3'-SL and OPN can effectively reduce inflammatory storms and exhibit anti-influenza virus effects through synergistic action.
Assuntos
Influenza Humana , Orthomyxoviridae , Lactente , Feminino , Humanos , Osteopontina/genética , Influenza Humana/tratamento farmacológico , Leite Humano/metabolismo , Oligossacarídeos/farmacologia , AntiviraisRESUMO
Human milk is abundant in carbohydrates and includes human milk oligosaccharides (HMOs) and N/O-glycans conjugated to proteins. HMO compositions and concentrations vary in individuals according to the maternal secretor status based on the fucosyltransferase 2 genotype; however, the profile of N/O-glycans remains uninvestigated because of the analytical complexity. Herein, we applied a label-free chromatography-mass spectrometry (LC-MS) technique to elucidate the variation in the composition and concentration of N/O-glycans in human milk. We used label-free LC-MS to relatively quantify 16 N-glycans and 12 O-glycans in 200 samples of Japanese human milk (1-2 months postpartum) and applied high performance anion exchange chromatography with pulsed amperometric detection to absolutely quantify the concentrations of 11 representative HMOs. Cluster analysis of the quantitative data revealed that O-glycans and several HMOs were classified according to the presence or absence of fucose linked to galactose while N-glycans were classified into a different group from O-glycans and HMOs. O-glycans and HMOs with fucose linked to galactose were more abundant in human milk from secretor mothers than from nonsecretor mothers. Thus, secretor status influenced the composition and concentration of HMOs and O-glycans but not those of N-glycans in human milk.
Assuntos
Fucose , Leite Humano , Feminino , Humanos , Leite Humano/química , Japão , Fucose/análise , Galactose , Espectrometria de Massa com Cromatografia Líquida , Polissacarídeos/análise , Espectrometria de Massas , Oligossacarídeos/químicaRESUMO
AIMS: This study explored the effect of three different prebiotics, the human milk oligosaccharide 2'-fucosyllactose (2'-FL), an oligofructose-enriched inulin (fructo-oligosaccharide, or FOS), and a galacto-oligosaccaride (GOS) mixture, on the faecal microbiota from patients with ulcerative colitis (UC) using in vitro batch culture fermentation models. Changes in bacterial groups and short-chain fatty acid (SCFA) production were compared. METHODS AND RESULTS: In vitro pH controlled batch culture fermentation was carried out over 48 h on samples from three healthy controls and three patients with active UC. Four vessels were run, one negative control and one for each of the prebiotic substrates. Bacterial enumeration was carried out using fluorescence in situ hybridization with flow cytometry. SCFA quantification was performed using gas chromatography mass spectrometry. All substrates had a positive effect on the gut microbiota and led to significant increases in total SCFA and propionate concentrations at 48 h. 2'-FL was the only substrate to significantly increase acetate and led to the greatest increase in total SCFA concentration at 48 h. 2'-FL best suppressed Desulfovibrio spp., a pathogen associated with UC. CONCLUSIONS: 2'FL, FOS, and GOS all significantly improved the gut microbiota in this in vitro study and also led to increased SCFA.
Assuntos
Colite Ulcerativa , Prebióticos , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Fermentação , Hibridização in Situ Fluorescente , Fezes/microbiologia , Ácidos Graxos Voláteis , Oligossacarídeos/farmacologia , Bactérias/genéticaRESUMO
Lacto-N-tetraose (LNT) is a human milk oligosaccharide with average concentrations ranging from 0.74 to 1.07 g/L in breastmilk, depending on the lactation stage. In this study, the preclinical safety of LNT produced by the Escherichia coli K-12 E2083 production strain was assessed. LNT was negative in both the bacterial reverse mutation assay and the in vitro micronucleus assay, demonstrating the absence of genotoxic potential for this substance. In the OECD 408 guideline compliant 90-day oral toxicity study rat, LNT did not induce any adverse effects in any treatment group up to and including the highest dose tested, and no LOAEL could be determined. Therefore, the no-observed-adverse effect level (NOAEL) is set at the highest dose level tested, i.e. a dietary level of 5 % (w/w), corresponding to ≥2856 mg/kg bw/day and ≥3253 mg/kg bw/day for males and females, respectively. This might be an underestimation of the NOAEL, caused by the range of dose levels tested. The results obtained in the current study are in good agreement with available data generated using other biotechnologically produced LNT batches and therefore support its safe use as a food ingredient.
Assuntos
Escherichia coli K12 , Masculino , Feminino , Ratos , Humanos , Animais , Oligossacarídeos/toxicidade , Leite Humano , Nível de Efeito Adverso não Observado , Escherichia coliRESUMO
Lacto-N-fucopentaose I (LNFP I) has recently been approved as generally recognized as safe, demonstrating its great commercial potential in the food industry. Microbial synthesis through metabolic engineering strategies is an effective approach for large-scale production of LNFP I. Biosynthesis of LNFP I requires consideration of two key points: high titer with low byproduct 2'-fucosyllactose (2'-FL) generation and high purity with low lacto-N-triose II (LNTri II) and lacto-N-tetraose (LNT) residues. Herein, α1,2-fucosyltransferase from Thermoanaerobacterium sp. RBIITD was screened from 16 selected LNFP I-producing glycosyltransferase candidates, showing the highest in vivo LNFP I productivity. Chromosomal integration of wbgO enhanced the LNFP I production by improving the precursor conversion from LNTri II to LNT. The best engineered strain produced 4.42 and 35.1 g/L LNFP I in shake-flask and fed-batch cultivation, respectively. The residual LNTri II and LNT were eliminated by further cultivation with a recombinant strain coexpressing Bifidobacterium bifidum ß-N-acetylhexosaminidase and lacto-N-biosidase. A strategy for LNFP I biosynthesis with high yield and purity was finally realized, providing support for its practical application in large-scale production.
Assuntos
Glicosiltransferases , Leite Humano , Trissacarídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Leite Humano/química , Oligossacarídeos/químicaRESUMO
Lacto-N-fucopentaose I (LNFP I) is the second most abundant fucosylated human milk oligosaccharide (HMO) in breast milk after 2'-fucosyllactose (2'-FL). Studies have reported that LNFP I exhibits antimicrobial activity against group B Streptococcus and antiviral effects against Enterovirus and Norovirus. Microbial production of HMOs by engineered Escherichia coli is an attractive, low-cost process, but few studies have investigated production of long-chain HMOs, including the pentasaccharide LNFP I. LNFP I is synthesized by α1,2-fucosyltransfer reaction to the N-acetylglucosamine moiety of the lacto-N-tetraose skeleton, which is catalyzed by α1,2-fucosyltransferase (α1,2-FucT). However, α1,2-FucTs competitively transfer fucose to lactose, resulting in formation of the byproduct 2'-FL. In this study, we constructed LNFP I-producing strains of E. coli with various α1,2-fucTs, and observed undesired 2'-FL accumulation during fed-batch fermentation, although, in test tube assays, some strains produced LNFP I without 2'-FL. We hypothesized that promiscuous substrate selectivity of α1,2-FucT was responsible for 2'-FL production. Therefore, to decrease the formation of byproduct 2'-FL, we designed 15 variants of FsFucT from Francisella sp. FSC1006 by rational and semi-rational design approaches. Five of these variants of FsFucT surpassed a twofold reduction in 2'-FL production compared with wild-type FsFucT while maintaining comparable levels of LNFP I production. These designs encompassed substitutions in either a loop region of the enzyme (residues 154-171), or in specific residues (Q7, H162, and L164) that influence substrate binding either directly or indirectly. In particular, the E. coli strain that expressed FsFucT_S3 variants, with a substituted loop region (residues 154-171) forming an α-helix structure, achieved an accumulation of 19.6 g/L of LNFP I and 0.04 g/L of 2'-FL, while the E. coli strain expressing the wild-type FsFucT accumulated 12.2 g/L of LNFP I and 5.85 g/L of 2'-FL during Fed-bach fermentation. Therefore, we have successfully demonstrated the selective and efficient production of the pentasaccharide LNFP I without the byproduct 2'-FL by combining protein engineering of α1,2-FucT designed through in silico structural modeling of an α1,2-FucT and docking simulation with various ligands, with metabolic engineering of the host cell.
Assuntos
Escherichia coli , Leite Humano , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Leite Humano/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Fucosiltransferases/genéticaRESUMO
The gut microbiome in the inflammatory bowel disease, ulcerative colitis (UC), is different to that of healthy controls. Patients with UC have relative reductions in abundance of Firmicutes and Bifidobacterium in the colon, and an increase in sulfate-reducing bacteria. Prebiotics are dietary substrates which are selectively metabolised by the human colonic microbiota to confer health benefits to the host. This review explores our current understanding of the potential benefits of prebiotics on various clinical, biochemical, and microbiological endpoints in UC, including new perspectives gained from recent studies in the field. This review looks to the future and highlights the need for appropriately designed trials to explore this potentially exciting new avenue for the treatment of UC.
RESUMO
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on lacto-N-fucopentaose I (LNFP-I)/2'-fucosyllactose (2'-FL) mixture as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharides (HiMO) LNFP-I and 2'-FL, but it also contains d-lactose, lacto-N-tetraose, difucosyllactose, 3-fucosyllactose, LNFP-I fructose isomer, 2'-fucosyl-d-lactulose, l-fucose and 2'-fucosyl-d-lactitol, and a small fraction of other related saccharides. The NF is produced by fermentation by a genetically modified strain (Escherichia coli K-12 DH1 MDO MP2173b) of E. coli K-12 DH1 (DSM 4235). The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant formula (IF) and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements (FS). The target population is the general population. The anticipated daily intake of LNFP-I from use in IF is similar to the estimated natural mean highest daily intake in breastfed infants. Overall, the anticipated daily intake of LNFP-I from the NF as a food ingredient at the maximum proposed use levels is unlikely to exceed the intake level of breastfed infants on a body weight basis. The intake in breastfed infants on a body weight basis is expected to be safe also for other population groups. The anticipated 2'-FL intake is generally rather low. The use of the NF in FS is not intended if other foods with added NF components or human milk (for infants and young children) are consumed on the same day. The Panel concludes that the NF, a mixture of LNFP-I and 2'-FL, is safe under the proposed conditions of use.
RESUMO
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 2'-fucosyllactose (2'-FL) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 2'-FL, but it also contains d-lactose, l-fucose, fucosylgalactose, difucosyllactose, d-glucose and d-galactose, and a small fraction of other related saccharides. The NF is produced by fermentation by a genetically modified strain (Escherichia coli SGR5) of E. coli W (ATCC 9637). The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant applies for the same use and use levels as already authorised for 2'-FL and included in the Union list of NFs, with the general population as target population. The Panel noted that the available intake estimate is not recent (2015) and based on a different database (2008-2010 UK data) than that used by EFSA. For this reason, the Panel decided to perform a new intake estimate according to the current EFSA approach. The Panel notes that the highest P95 daily intake of the NF from the use as food ingredient is higher than the estimated natural highest mean daily intake in breastfed infants and marginally higher in young children. The applicant also proposes to extend the use of 2'-FL in food supplements (FS) for infants at the use level of 1.2 g/day. The resulting estimated intake in infants from the proposed use in FS is within the natural intake of 2'-FL in breastfed infants. FS are not intended to be used if other foods with added 2'-FL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
RESUMO
BACKGROUND: Breast milk is critical for neonates, providing the necessary energy, nutrients, and bioactive compounds for growth and development. Research indicated that human milk oligosaccharides (HMOs) have been shown to shape a beneficial gut microbiota, as well as their metabolism (e.g. short-chain fatty acids). 2'-Fucosyllactose (2'-FL) is one major HMO that composed of 30% of total HMOs. OBJECTIVES: This study aimed to understand the impact of 2'-FL on the composition and metabolism of infant gut microbiota. METHODS: Our study utilized an in-vitro human colonic model (HCM) to investigate the host-free interactions between 2'-FL and infant gut microbiota. To simulate the infant gut microbiota, we inoculated the HCM system with eight representative bacterial species from infant gut microbiota. The effects of 2'-FL on the gut microbial composition and their metabolism were determined through real-time quantitative PCR and liquid-chromatography mass spectrometry (LC/MS). The obtained data were analyzed using Compound Discoverer 3.1 and MetaboAnalyst 4.0. RESULTS: Our study findings suggest that the intervention of 2'-FL in HCM resulted in a significant change in the abundance of representative bacterial species. PCR analysis showed a consistent increase in the abundance of Parabacteroides. distasonis in all three colon sections. Furthermore, analysis of free fatty acids revealed a significant increase in their levels in the ascending, transverse, and descending colons, except for caproic acid, which was significantly reduced to a non-detectable level. The identification of significant extracellular polar metabolites, such as glutathione and serotonin, enabled us to distinguish between the metabolomes before and after 2'-FL intervention. Moreover, correlation analysis revealed a significant association between the altered microbes and microbial metabolites. CONCLUSIONS: In summary, our study demonstrated the impact of 2'-FL intervention on the defined composition of infant gut microbiota and their metabolic pathways in an in vitro setting. Our findings provide valuable insights for future follow-up investigations into the role of 2'-FL in regulating the growth and development of infant gut microbiota in vivo.
Assuntos
Microbioma Gastrointestinal , Recém-Nascido , Feminino , Humanos , Lactente , Trissacarídeos/análise , Trissacarídeos/metabolismo , Trissacarídeos/farmacologia , Leite Humano/química , Oligossacarídeos/metabolismo , Colo/metabolismoRESUMO
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3'-sialyllactose (3'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3'-SL (sodium salt), but it also contains sialic acid, d-glucose, d-lactose, 3'-sialyllactulose and 6'-sialyllactose sodium salts and a small fraction of other related saccharides. The NF is produced by fermentation by a genetically modified strain (Escherichia coli NEO3) of E. coli W (ATCC 9637). The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for special medical purposes and food supplements (FS). The target population is the general population. The applicant applies for the same uses and use levels as already assessed for 3'-SL sodium salt produced by a genetically modified strain of E. coli K-12 DH1, with the exception for the use in FS, which is proposed to be higher (from 0.5 to 1.0 g/day) in individuals from 3 years of age. Since the NF as a food ingredient would be consumed at the same extent as the already assessed 3'-SL sodium salt, no new estimates of the intakes have been carried out. The Panel notes that the maximum daily intake of 3'-SL from the proposed use of the NF in FS for individuals from 3 years of age (1.0 g/day) is lower than the estimated highest mean daily intake of 3'-SL in breastfed infants. FS are not intended to be used if other sources of 3'-SL are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
RESUMO
Human milk oligosaccharides (HMOs) are very distinctive components in human milk and are beneficial for infant health. Lacto-N-biose I (LNB) is the core structural unit of HMOs, which could be used for the synthesis of other HMOs. In this study, an ATP-free in vitro synthetic enzymatic biosystem contained four thermostable enzymes (alpha-glucan phosphorylase from Thermococcus kodakarensis, UDP-glucose-hexose-1-phosphate uridylyltransferase from Thermotoga maritima, UDP-glucose 4-epimerase from T. maritima, lacto-N-biose phosphorylase from Clostridium thermobutyricum) were constructed for the biosynthesis of LNB from starch and N-acetylglucosamine (GlcNAc). Under the optimal conditions, 0.75 g/L and 2.23 g/L LNB was produced from 1.1 g/L and 4.4 g/L GlcNAc and excess starch, with the molar yield of 39% and 29% based on the GlcNAc concentration, respectively, confirming the feasibility of this in vitro synthetic enzymatic biosystem for LNB synthesis and shedding light on the biosynthesis of other HMOs using LNB as the core structural unit from low cost polysaccharides.
RESUMO
BACKGROUND: Bifidobacteria represent an important gut commensal in humans, particularly during initial microbiome assembly in the first year of life. Enrichment of Bifidobacterium is mediated though the utilization of human milk oligosaccharides (HMOs), as several human-adapted species have dedicated genomic loci for transport and metabolism of these glycans. This results in the release of fermentation products into the gut lumen which may offer physiological benefits to the host. Synbiotic pairing of probiotic species with a cognate prebiotic delivers a competitive advantage, as the prebiotic provides a nutrient niche. METHODS: To determine the fitness advantage and metabolic characteristics of an HMO-catabolizing Bifidobacterium strain in the presence or absence of 2'-fucosyllactose (2'-FL), conventionally colonized mice were gavaged with either Bifidobacterium pseudocatenulatum MP80 (B.p. MP80) (as the probiotic) or saline during the first 3 days of the experiment and received water or water containing 2'-FL (as the prebiotic) throughout the study. RESULTS: 16S rRNA gene sequencing revealed that mice provided only B.p. MP80 were observed to have a similar microbiota composition as control mice throughout the experiment with a consistently low proportion of Bifidobacteriaceae present. Using 1H NMR spectroscopy, similar metabolic profiles of gut luminal contents and serum were observed between the control and B.p. MP80 group. Conversely, synbiotic supplemented mice exhibited dramatic shifts in their community structure across time with an overall increased, yet variable, proportion of Bifidobacteriaceae following oral inoculation. Parsing the synbiotic group into high and moderate bifidobacterial persistence based on the median proportion of Bifidobacteriaceae, significant differences in gut microbial diversity and metabolite profiles were observed. Notably, metabolites associated with the fermentation of 2'-FL by bifidobacteria were significantly greater in mice with a high proportion of Bifidobacteriaceae in the gut suggesting metabolite production scales with population density. Moreover, 1,2-propanediol, a fucose fermentation product, was only observed in the liver and brain of mice harboring high proportions of Bifidobacteriaceae. CONCLUSIONS: This study reinforces that the colonization of the gut with a commensal microorganism does not guarantee a specific functional output. Video Abstract.
Assuntos
Actinobacteria , Bifidobacterium pseudocatenulatum , Simbióticos , Humanos , Animais , Camundongos , RNA Ribossômico 16S/genética , Leite Humano , Oligossacarídeos , Bifidobacterium , PrebióticosRESUMO
Human milk oligosaccharides (HMOs) are a major component of human milk. They are associated with multiple health benefits and are manufactured on a large scale for their addition to different food products. In this systematic review, we evaluate the health outcomes of published clinical trials involving the supplementation of manufactured HMOs. We screened the PubMed database and Cochrane Library, identifying 26 relevant clinical trials and five publications describing follow-up studies. The clinical trials varied in study populations, including healthy term infants, infants with medical indications, children, and adults. They tested eight different HMO structures individually or as blends in varying doses. All trials included safety and tolerance assessments, and some also assessed growth, stool characteristics, infections, gut microbiome composition, microbial metabolites, and biomarkers. The studies consistently found that HMO supplementation was safe and well tolerated. Infant studies reported a shift in outcomes towards those observed in breastfed infants, including stool characteristics, gut microbiome composition, and intestinal immune markers. Beneficial gut health and immune system effects have also been observed in other populations following HMO supplementation. Further clinical trials are needed to substantiate the effects of HMO supplementation on human health and to understand their structure and dose dependency.
Assuntos
Aleitamento Materno , Leite Humano , Adulto , Criança , Lactente , Feminino , Humanos , Comércio , Oligossacarídeos , Suplementos NutricionaisRESUMO
Human milk oligosaccharides (HMOs) are complex glycans associated with positive infant health outcomes. The concentrations of HMOs in the milk of lactating women are associated with substantial intra- and inter-individual differences and may be influenced by maternal physiological and/or nutrition-related factors. The primary aim of this study was to explore potential influences of short-term maternal diet and current body composition on HMO profiles in mature human milk. Milk samples were collected at 3-4 months postpartum from 101 healthy Australian women using standardised procedures, and analysed for macronutrients (lactose, fat, and protein). In addition, HMO concentrations were analysed using liquid-chromatography mass-spectrometry (LC-MS). Maternal dietary data were collected using three validated 24-h dietary recalls, and the body composition of a subgroup of mothers was assessed by DEXA scans (n = 30). Most (79%) of the women were secretor-positive. Individual nutrients were not significantly correlated with HMO concentrations after correction for multiple comparisons (p > 0.05), except for dietary folate intake. DEXA scans revealed no associations between HMO profiles and maternal body composition during established lactation. The study findings suggest a lack of clear and consistent associations between maternal nutrition and HMO concentrations in mature human milk from healthy lactating women with adequate dietary intake. The prevailing influence of genetic variation in lactating mothers may overshadow any impact of maternal nutritional and/or physiological status on HMO composition in mature human milk.