Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.929
Filtrar
1.
Int J Biol Macromol ; 275(Pt 2): 133744, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986990

RESUMO

Hyaluronic acid is a major constituent of the extracellular matrix of vertebrate tissue that provides mechanical support to cells and acts as a mediator in regulation of necessary biochemical process essential for maintenance of tissue homeostasis. The variation in quantity of hyaluronic acid content in tissues is often associated with different pathological conditions. It is associated with tumor aggression and progression as it plays crucial role in regulating different aspects of tumorigenesis and several defined hallmarks of cancer. It assists in tumor progression by undergoing extracellular remodeling to establish tumor microenvironment which restricts the delivery of cytotoxic drugs to neoplastic cells due to increase in interstitial pressure. Hyaluronic acid catabolic and anabolic genes and low-molecular weight hyaluronic acid play significant role in the establishing tumor microenvironment by assisting in cell proliferation, metastasis and invasion. On the other hand, it is also used as an effective drug-delivery platform in cancer therapies as its biocompatibility and biodegradability lower the toxicity of chemotherapeutic drugs and increase drug retention. High-molecular weight hyaluronic acid-bioconjugates specifically bind with hyaladherins, facilitating targeted drug delivery and also exert anti-inflammatory properties. This review also highlights the market and patent trends in the development of effective chemotherapeutic hyaluronic acid formulations and the current scenario regarding clinical trials.

2.
Arch Biochem Biophys ; : 110098, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009271

RESUMO

Mouse transmembrane protein 2 (mTMEM2) has been identified as a hyaluronidase, which has extracellularly G8 and GG domains and PbH1 repeats; however, our previously study showed that human TMEM2 (hTMEM2) is not a catalytic hyaluronidase due to the absence of the critical amino acid residues (His248/Ala303) in the GG domain. Naked mole-rats (NMRs) accumulate abundant high-molecular weight hyaluronan (HA) in their tissues, suggesting decreased HA degradation. Therefore, we aimed to evaluate the HA-degrading activity of NMR TMEM2 (nmrTMEM2) and compare it with those of mTMEM2 and hTMEM2. The amino acid residues of nmrTMEM2 (Asn247/Val302) are similar to Asn248/Phe303 of hTMEM2, and nmrTMEM2-expressing HEK293T cells showed negligible activity. We confirmed the significance of these amino acid residues using an inactive chimeric TMEM2 with the human GG domain, which acquired catalytic activity when Asn248/Phe303 was substituted with His248/Ala303. Semi-quantitative comparison of the activities of the membrane-fractions derived from m/h/nmrTMEM2-expressing HEK293T cells revealed that at least 20- and 14-fold higher amounts of nmr/ hTMEM2 were required to degrade HA to the same extent as by mTMEM2. Thus, unlike mTMEM2, nmrTMEM2 is not a physiological hyaluronidase. The inability of nmrTMEM2 to degrade HA might partially account for the high-molecular-weight HA accumulation in NMR tissues.

3.
Pathol Res Pract ; 260: 155434, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38991455

RESUMO

Hyaluronan (HA), as a component of extracellular matrix, has pivotal roles in both physiological and pathological condition. In breast cancer, while high molecular weight HA is produced by hyaluronan synthase, it is degraded by hyaluronidases (hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2)) into low molecular weight HA (LMW HA), which is considered to have pro-tumorigenic effects in human malignancies. However, HA and HYAL2, the rate-limiting enzyme of HA degradation, have not been comprehensively examined in breast cancer and clinicopathological significance of LMW HA remains to be elucidated in breast cancer. We therefore histochemically localized HA as well as HYAL2 in 116 breast cancer tissues. In addition, we examined size-dependent function of HA on breast cancer cell proliferation and migration using MCF-7 and MDA-MB-231 breast cancer cell lines. HA was localized in both the stroma and breast carcinoma cells, while HYAL2 was predominantly localized in breast carcinoma cells. HA was significantly correlated with cell proliferation and invasion ability as well as increased risk of recurrence especially in HYAL2 positive group. On the other hand, HYAL2 was correlated with breast cancer cell proliferation and increased risk of recurrence. In addition, in vitro analyses revealed that lower molecular weight HA increased sphere forming ability and migration in MCF-7 and MDA-MB-231, whereas higher molecular weight HA inhibited them. It was concluded that HA needs to be degraded by HYAL2 to exert pro-tumorigenic effects and comprehensive HA/HYAL2 status serves as a potent prognostic factor in breast cancer.

4.
Bone ; : 117199, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992453

RESUMO

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.

5.
Lab Invest ; : 102104, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945481

RESUMO

The glycosaminoglycan hyaluronan (HA) plays an important role in tumor progression. However, its biological and clinical significance in papillary thyroid cancer (PTC) remains unknown. Immunohistochemistry was performed to examine HA expression in tissues from PTC patients. Two PTC cell lines were treated with HA synthesized inhibitor against HA production to assess its function. Serum HA levels from 107 PTC patients, 30 Hashimoto thyroiditis, and 45 normal controls (NC) were measured by chemiluminescence immunoassay. HA levels in FNA washouts obtained from thyroid nodules and lymph nodes (LNs) were measured by chemiluminescence immunoassay. Area under the curve (AUC) were computed to evaluate HA`s clinical value. HA was highly expressed in PTC. Reducing HA production significantly inhibited PTC cell proliferation and invasion. Importantly, serum HA levels in PTC were significantly higher than in NCs and Hashimoto thyroiditis and allowed distinguishing of thyroid cancers from NCs with high accuracy (AUC=0.782). Moreover, elevated serum HA levels in PTC correlate with LN metastasis. HA levels in fine needle aspiration (FNA) washouts from PTC patients were significantly higher than in benign controls, with a high AUC value (0.8644) for distinguishing PTC from benign controls. Furthermore, HA levels in FNA washouts from metastatic LN were significantly higher than in non-metastatic LN, with a high AUC value (0.8007) for distinguishing metastatic LNs from non-metastatic LNs. HA in serum and FNA washout exhibited a potential significance for PTC diagnosis and indicator for LN metastasis in patients with PTC.

6.
Biochem Biophys Res Commun ; 724: 150234, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865812

RESUMO

Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.


Assuntos
Colágeno , Células Endoteliais da Veia Umbilical Humana , Ácido Hialurônico , Hidrogéis , Laminina , Microvasos , Junções Íntimas , Humanos , Hidrogéis/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Laminina/química , Laminina/metabolismo , Colágeno/química , Colágeno/metabolismo , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Junções Íntimas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Cultivadas
7.
Carbohydr Polym ; 340: 122331, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858014

RESUMO

Self-supporting films from amphiphilic hyaluronan are suitable for medical applications like wound dressings or resorbable implants. These films are typically cast from water/alcohol solutions. However, when the mixed solvent evaporates in ambient air, convection flows develop in the solution and become imprinted in the film, potentially compromising its properties. Consequently, we developed a novel film manufacturing method: drying in a closed box under saturated vapour conditions. Using this approach, we prepared a series of optically clear lauroyl-hyaluronan (LHA) films with uniform thickness and compared them to their air-dried counterparts. We first evaluated swelling ratios and elastic moduli for LHA films with varying degrees of substitution. The box-dried films swelled significantly less and were 1-2 orders of magnitude stiffer than air-dried films from the same LHA sample. Confocal microscopy revealed that box-dried films exhibited a regular microstructure, while air-dried films displayed a pore-size gradient and strong microstructure modulation due to convection flows. Local elastic modulus variations arising from these microstructures were assessed using nanoindentation mapping. Importantly, achieving the desired film stiffness requires much lower polymer modification when box-drying is used, enhancing the biological response to the material. These findings have implications for all polysaccharide formulations that utilize mixed solvents.

8.
Cell ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38942015

RESUMO

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.

9.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
10.
Pharmaceutics ; 16(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931956

RESUMO

Therapeutics for actively targeting over-expressed receptors are of great interest because the majority of diseased tissues originate from normal cells and do not possess a unique receptor from which they can be differentiated. One such receptor is CD44, which has been shown to be highly overexpressed in many breast cancers and other types of cancer cells. While CD44 has been documented to express low levels in normal adult neurons, astrocytes, and microglia, this receptor may be overexpressed by neuroblastoma and neuroglioma. If differential expression exists between normal and cancerous cells, hyaluronan (HA) could be a useful carrier that targets carcinomas. Thus, HA was conjugated with resveratrol (HA-R), and its efficacy was tested on cortical-neuroblastoma hybrid, neuroblastoma, and neuroglioma cells. Confocal and flow cytometry showed these cells express CD44 and are able to bind and uptake HA-R. The toxicity of HA-R correlated well with CD44 expression in this study. Therefore, conjugating resveratrol and other chemotherapeutics to HA could minimize the side effects for normal cells within the brain and nervous system and could be a viable strategy for developing targeted therapies.

11.
J Biol Chem ; 300(7): 107449, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844132

RESUMO

Hyaluronan (HA) is a high-molecular-weight (HMW) glycosaminoglycan, which is a fundamental component of the extracellular matrix that is involved in a variety of biological processes. We previously showed that the HYBID/KIAA1199/CEMIP axis plays a key role in the depolymerization of HMW-HA in normal human dermal fibroblasts (NHDFs). However, its roles in normal human epidermal keratinocytes (NHEKs) remained unclear. HYBID mRNA expression in NHEKs was lower than that in NHDFs, and NHEKs showed no depolymerization of extracellular HMW-HA in culture, indicating that HYBID does not contribute to extracellular HA degradation. In this study, we found that the cell-free conditioned medium of NHEKs degraded HMW-HA under weakly acidic conditions (pH 4.8). This degrading activity was abolished by hyaluronidase 1 (HYAL1) knockdown but not by HYAL2 knockdown. Newly synthesized HYAL1 was mainly secreted extracellularly, and the secretion of HYAL1 was increased during differentiation, suggesting that epidermal interspace HA is physiologically degraded by HYAL1 according to pH decrease during stratum corneum formation. In HA synthesis, hyaluronan synthase 3 (HAS3) knockdown reduced HA production by NHEKs, and interferon-γ-dependent HA synthesis was correlated with increased HAS3 expression. Furthermore, HA production was increased by TMEM2 knockdown through enhanced HAS3 expression. These results indicate that NHEKs regulate HA metabolism via HYAL1 and HAS3, and TMEM2 is a regulator of HAS3-dependent HA production.

12.
BMC Vet Res ; 20(1): 273, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918797

RESUMO

BACKGROUND: Equine asthma (EA) is a chronic lower airway inflammation that leads to structural and functional changes. Hyaluronic acid (HA) has crucial functions in the extracellular matrix homeostasis and inflammatory mediator activity. HA concentration in the lungs increases in several human airway diseases. However, its associations with naturally occurring EA and airway remodelling have not been previously studied. Our aim was to investigate the association of equine neutrophilic airway inflammation (NAI) severity, airway remodelling, and HA concentration in horses with naturally occurring EA. We hypothesised that HA concentration and airway remodelling would increase with the severity of NAI. HA concentrations of bronchoalveolar lavage fluid supernatant (SUP) and plasma of 27 neutrophilic EA horses, and 28 control horses were measured. Additionally, remodelling and HA staining intensity were assessed from endobronchial biopsies from 10 moderate NAI horses, 5 severe NAI horses, and 15 control horses. RESULTS: The HA concentration in SUP was higher in EA horses compared to controls (p = 0.007). Plasma HA concentrations were not different between the groups. In the endobronchial biopsies, moderate NAI horses showed epithelial hyperplasia and inflammatory cell infiltrate, while severe NAI horses also showed fibrosis and desquamation of the epithelium. The degree of remodelling was higher in severe NAI compared to moderate NAI (p = 0.048) and controls (p = 0.016). Intense HA staining was observed in bronchial cell membranes, basement membranes, and connective tissue without significant differences between the groups. CONCLUSION: The release of HA to the airway lumen increases in naturally occurring neutrophilic EA without clear changes in its tissue distribution, and significant airway remodelling only develops in severe NAI.


Assuntos
Remodelação das Vias Aéreas , Asma , Líquido da Lavagem Broncoalveolar , Doenças dos Cavalos , Ácido Hialurônico , Animais , Cavalos , Ácido Hialurônico/sangue , Asma/veterinária , Asma/patologia , Doenças dos Cavalos/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Masculino , Neutrófilos , Inflamação/veterinária , Inflamação/patologia , Índice de Gravidade de Doença
13.
Artigo em Inglês | MEDLINE | ID: mdl-38771725

RESUMO

INTRODUCTION: This was a single-center pilot study that sought to describe an innovative use of 4DryField® PH (premix) for preventing the recurrence of intrauterine adhesions (IUAs) after hysteroscopic adhesiolysis in patients with Asherman's syndrome (AS). MATERIAL AND METHODS: Twenty-three patients with AS were enrolled and 20 were randomized (1:1 ratio) to intrauterine application of 4DryField® PH (n = 10) or Hyalobarrier® gel (n = 10) in a single-blind manner. We evaluated IUAs (American Fertility Society [AFS] score) during initial hysteroscopy and second-look hysteroscopy one month later. Patients completed a follow-up symptoms questionnaire three and reproductive outcomes questionnaire six months later. RESULTS: The demographic and clinical characteristics, as well as severity of IUAs, were comparable in both groups. The mean initial AFS score was 9 and 8.5 in the 4DryField® PH and Hyalobarrier® gel groups, respectively (p = .476). There were no between-group differences in AFS progress (5.9 vs. 5.6, p = .675), need for secondary adhesiolysis (7 vs. 7 patients, p = 1), and the follow-up outcomes. CONCLUSION: 4DryField® PH could be a promising antiadhesive agent for preventing the recurrence of IUAs, showing similar effectiveness and safety to Hyalobarrier® gel. Our findings warrant prospective validation in a larger clinical trial. CLINICAL TRIAL REGISTRY NUMBER: ISRCTN15630617.

14.
Chemistry ; : e202401028, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797703

RESUMO

Cationic Mn(III)-meso-tetraarylporphyrin derivatives, substituted in para position with different size alkyl chains, were investigated to function as antioxidants in free-radical degradation of high-molar-mass hyaluronan by the methods of rotational viscometry and oximetry. The results of rotational viscometry showed that MnTM-4-PyP5+, MnTE-4-PyP5+, MnTPr-4-PyP5+, MnTPen-4-PyP5+ and MnTHep-4-PyP5+ showed high efficiency in decomposing H2O2, and reducing of peroxidized hyaluronan. When using oxygen electrode, MnTE-4-PyP5+, MnTPr-4-PyP5+, MnTPen-4-PyP5+, and MnTHep-4-PyP5+ applied to function as protective antioxidants in hyaluronan degradation, the uptake of dissolved oxygen from the reaction milieu was rapid, followed by continual increase in oxygen concentration up to the end of the measurement. However, when especially MnTE-4-PyP5+, MnTPr-4-PyP5+, and MnTPen-4-PyP5+ were examined as hyaluronan chain-breaking antioxidants, after short-term dissolved oxygen uptake, almost no increase in oxygen concentration was shown.

15.
J Histochem Cytochem ; 72(6): 373-385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804525

RESUMO

Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.


Assuntos
Reabsorção Óssea , Ácido Hialurônico , Osteogênese , Osteoporose , Ratos , Reabsorção Óssea/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ovariectomia , Feminino , Ratos Sprague-Dawley , Osteoclastos/efeitos dos fármacos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osteoblastos/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico
16.
ACS Appl Mater Interfaces ; 16(21): 27055-27064, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757711

RESUMO

A major contributing cause to breast cancer related death is metastasis. Moreover, breast cancer metastasis often shows little symptoms until a large area of the organs is occupied by metastatic cancer cells. Breast cancer multimodal imaging is attractive since it integrates advantages from several modalities, enabling more accurate cancer detection. Glycoprotein CD44 is overexpressed on most breast cancer cells and is the primary cell surface receptor for hyaluronan (HA). To facilitate breast cancer diagnosis, we report an indocyanine green (ICG) and HA conjugated iron oxide nanoparticle (NP-ICG-HA), which enabled active targeting to breast cancer by HA-CD44 interaction and detected metastasis with magnetic particle imaging (MPI) and near-infrared fluorescence imaging (NIR-FI). When evaluated in a transgenic breast cancer mouse model, NP-ICG-HA enabled the detection of multiple breast tumors in MPI and NIR-FI, providing more comprehensive images and a diagnosis of breast cancer. Furthermore, NP-ICG-HAs were evaluated in a lung metastasis model. Upon NP-ICG-HA administration, MPI showed clear signals in the lungs, indicating the tumor sites. This is the first time that HA-based NPs have enabled MPI of cancer. NP-ICG-HAs are an attractive platform for noninvasive detection of primary breast cancer and lung metastasis.


Assuntos
Neoplasias da Mama , Ácido Hialurônico , Verde de Indocianina , Neoplasias Pulmonares , Imagem Óptica , Ácido Hialurônico/química , Animais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Feminino , Camundongos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Humanos , Verde de Indocianina/química , Receptores de Hialuronatos/metabolismo , Linhagem Celular Tumoral , Nanopartículas de Magnetita/química , Nanopartículas Magnéticas de Óxido de Ferro/química
17.
Acta Biomater ; 181: 117-132, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705224

RESUMO

Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development. We investigated the addition of hyaluronan (HA), a component of the interphotoreceptor matrix, as an additive to promote long-term organoid survival and enhance retinal maturation. HA treatment had a significant reduction in the proportion of proliferating (Ki67+) cells and increase in the proportion of photoreceptors (CRX+), suggesting that HA accelerated photoreceptor commitment in vitro. HA significantly upregulated genes specific to photoreceptor maturation and outer segment development. Interestingly, prolonged HA-treatment significantly decreased the length of the brush border layer compared to those in control retinal organoids, where the photoreceptor outer segments reside; however, HA-treated organoids also had more mature outer segments with organized discs structures, as revealed by transmission electron microscopy. The brush border layer length was inversely proportional to the molar mass and viscosity of the hyaluronan added. This is the first study to investigate the role of exogenous HA, viscosity, and polymer molar mass on photoreceptor maturation, emphasizing the importance of material properties on organoid culture. STATEMENT OF SIGNIFICANCE: Retinal organoids are a powerful tool to study retinal development in vitro, though like many other organoid systems, can be highly variable. In this work, Shoichet and colleagues investigated the use of hyaluronan (HA), a native component of the interphotoreceptor matrix, to improve photoreceptor maturation in developing human retinal organoids. HA promoted human photoreceptor differentiation leading to mature outer segments with disc formation and more uniform and healthy retinal organoids. These findings highlight the importance of adding components native to the developing retina to generate more physiologically relevant photoreceptors for cell therapy and in vitro models to drive drug discovery and uncover novel disease mechanisms.


Assuntos
Diferenciação Celular , Ácido Hialurônico , Organoides , Retina , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Humanos , Organoides/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/citologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo
18.
Chem Biol Interact ; 396: 111045, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729283

RESUMO

Orbital connective tissue changes are contributors to the pathogenesis in thyroid eye disease (TED). Activated fibroblasts respond to immune stimuli with proliferation and increased hyaluronan (HA) production. Cyclosporin A (CsA) was reported to be beneficial in the treatment of TED. PDGF isoforms are increased in orbital tissue of TED patients and enhance HA production. We aimed to study the effect of CsA on HA production and hyaluronan synthase (HAS1, 2 and 3) and hyaluronidase (HYAL1 and 2) mRNA expressions in orbital fibroblasts (OFs). Measurements were performed in the presence or absence of CsA (10 µM) in unstimulated or PDGF-BB (10 ng/ml) stimulated OFs. The HA production of TED OFs (n = 7) and NON-TED OFs (n = 6) were measured by ELISA. The levels of mRNA expressions were examined using RT-PCR. The proliferation rate and metabolic activity were measured by BrdU incorporation and MTT assays, respectively. Treatment with CsA resulted in an average 42% decrease in HA production of OFs (p < 0.0001). CsA decreased the expression levels of HAS2, HAS3 and HYAL2 (p = 0.005, p = 0.005 and p = 0.002, respectively.) PDGF-BB increased HA production (p < 0.001) and HAS2 expression (p = 0.004). CsA could reduce the PDGF-BB-stimulated HA production (p < 0.001) and HAS2 expression (p = 0.005) below the untreated level. In addition, CsA treatment caused a decrease in proliferation potential (p = 0.002) and metabolic activity (p < 0.0001). These findings point to the fact that CsA affects HA metabolism via HAS2, HAS3 and HYAL2 inhibition in OFs. In addition to its well characterized immunosuppressant properties, CsA's beneficial effect in TED may be related to its direct inhibitory effect on basal and growth factor stimulated HA production.


Assuntos
Becaplermina , Proliferação de Células , Ciclosporina , Fibroblastos , Glucuronosiltransferase , Oftalmopatia de Graves , Hialuronan Sintases , Ácido Hialurônico , Hialuronoglucosaminidase , Proteínas Proto-Oncogênicas c-sis , Ácido Hialurônico/biossíntese , Ácido Hialurônico/farmacologia , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Ciclosporina/farmacologia , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/patologia , Oftalmopatia de Graves/tratamento farmacológico , Células Cultivadas , Órbita/metabolismo , Órbita/efeitos dos fármacos , Órbita/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI
19.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702837

RESUMO

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Assuntos
Diferenciação Celular , Ácido Hialurônico , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Meios de Cultura Livres de Soro/farmacologia , Linhagem da Célula , Células Cultivadas , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura
20.
Pancreatology ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38719756

RESUMO

BACKGROUND: Versican is a large extracellular matrix (ECM) proteoglycan with four isoforms V0-3. Elevated V0/V1 levels in breast cancer and glioma regulate cell migration and proliferation, but the role of versican in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: In this study, we evaluated the expression levels of versican isoforms, as well as their cellular source and interacting partners, in vivo, in human and mouse primary and metastatic PDAC tumours and in vitro, in pancreatic tumour cells and fibroblasts using immunostaining, confocal microscopy and qPCR techniques. We also investigated the effect of versican expression on fibroblast proliferation and migration using genetic and pharmacological approaches. RESULTS: We found that versican V0/V1 is highly expressed by cancer-associated fibroblasts (CAFs) in mouse and human primary and metastatic PDAC tumours. Our data also show that exposing fibroblasts to tumour-conditioned media upregulates V0 and V1 expressions, while Verbascoside (a CD44 inhibitor) downregulates V0/V1 expression. Importantly, V0/V1 knockdown significantly inhibits fibroblast proliferation. Mechanistically, we found that inhibiting hyaluronan synthesis does not affect versican co-localisation with CD44 in fibroblasts. CONCLUSION: CAFs express high levels of versican V0/V1 in primary and liver metastatic PDAC tumours and versican V0/V1 supports fibroblast proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA