RESUMO
Autogenous bone grafts have long been considered the optimal choice for bone reconstruction due to their excellent biocompatibility and osteogenic properties. However, their limited availability and associated donor site morbidity have led to exploration of alternative bone substitutes. Cryogels, with their interconnected porosity, shape recovery, and enhanced mass transport capabilities, have emerged as a promising polymer-based solution. By incorporating bioactive glasses and nanofillers, cryogel composites offer bioactivity, cost-efficiency, and easy cell integration. This approach not only enhances bone regeneration but also underscores the broader role of nanotechnology in regenerative medicine. This mini-review discusses the advancement of organic-inorganic composites, focusing on biopolymeric cryogels and inorganic elements for reinforcement. We highlight how cryogels can be integrated into minimally invasive procedures, reducing patient distress and complications, and advanced 3D-printing techniques that enable further customization of these materials to mimic bone tissue architecture, offering potential for patient-specific treatments.
RESUMO
Hybrid manufacturing processes integrate multiple manufacturing techniques to leverage their respective advantages and mitigate their limitations. This study combines additive manufacturing and injection molding, aiming to efficiently produce components with extensive design flexibility and functional integration. The research explores the interfacial fusion bonding of hybrid additively manufactured components under torsional loading. Specifically, it examines the impact of various surface treatments on injection molded parts and the influence of different build chamber temperatures during additive manufacturing on torsional strength. Polycarbonate components, neat, with glass or carbon fiber-reinforcement, are produced and assessed for dimensional accuracy, torsional strength, and fracture behavior. The findings emphasize the critical role of surface treatment for the injection molded components before additive manufacturing. Additionally, the study identifies the influence of chamber temperatures on both dimensional accuracy and torsional strength. Among all investigated materials, plasma-treated neat samples exhibited the best torsional strength. The torsional strength was increased by up to 87% by actively heating the build chamber to 186 °C for neat polycarbonate. These insights aim to advance the quality and performance of hybrid additively manufactured components, broadening their application potential across diverse fields.
RESUMO
This paper, for the first time, presents a potential application of titanium(IV) oxide and silicon(IV) oxide combined with lignin through a solvent-free mechanical process as admixtures for cement composites. The designed TiO2-SiO2 (1:1 wt./wt.) hybrid materials mixed with lignin were extensively characterized using Fourier transform infrared spectroscopy (FTIR), electrokinetic potential analysis, thermal analysis (TGA/DTG), and porous structure properties. In addition, particle size distributions and scanning electron microscopy (SEM) were conducted to evaluate morphological and microstructural properties. In the next step, the effect of the TiO2-SiO2/lignin hybrid admixture on the workability, hydration process, microstructure, porosity, mechanical, and antimicrobial properties of the cement composites was evaluated. It was observed that appropriately designed hybrid systems based on lignin contributed to better workability, with an improvement of 25 mm, and reduced porosity of cement composites, decreasing from 14.4 % to 13.3 % in the most favorable sample. Additionally, a higher microstructure density was observed, and with increasing amounts of hybrid material admixture, the mechanical parameters also improved. In addition, the TiO2-SiO2/lignin hybrid systems had significant potential due to their high microbial purity, suggesting their effectiveness in minimizing microbial accumulation on surfaces. The final stage of analysis involved employing response surface methodology (RSM) to ascertain the optimum composition of cement composites. The results obtained indicate that the TiO2-SiO2/lignin admixtures are a promising approach for the valorization of lignin waste flows in the design of cement composites.
RESUMO
Semiconductor photodetectors can work only in specific material-dependent light wavelength ranges, connected with the bandgaps and absorption capabilities of the utilized semiconductors. This limitation has driven the development of hybrid devices that exceed the capabilities of individual materials. In this study, for the first time, a hybrid heterojunction photodetector based on methylammonium lead bromide (MAPbBr3) polycrystalline film deposited on gallium arsenide (GaAs) was presented, along with comprehensive morphological, structural, optical, and photoelectrical investigations. The MAPbBr3/GaAs heterojunction photodetector exhibited wide spectral responsivity, from 540 to 900 nm. The fabrication steps of the prototype device, including a new preparation recipe for the MAPbBr3 solution and spinning, will be disclosed and discussed. It will be shown that extending the soaking time and refining the precursor solution's stoichiometry may enhance surface coverage, adhesion to the GaAs, and film uniformity, as well as provide a new way to integrate MAPbBr3 on GaAs. Compared to the pristine MAPbBr3, the enhanced structural purity of the perovskite on GaAs was confirmed by X-ray Diffraction (XRD) upon optimization compared to the conventional glass substrate. Scanning Electron Microscopy (SEM) revealed the formation of microcube-like structures on the top of an otherwise continuous MAPbBr3 polycrystalline film, with increased grain size and reduced grain boundary effects pointed by Energy-Dispersive Spectroscopy (EDS) and cathodoluminescence (CL). Enhanced absorption was demonstrated in the visible range and broadened photoluminescence (PL) emission at room temperature, with traces of reduction in the orthorhombic tilting revealed by temperature-dependent PL. A reduced average carrier lifetime was reduced to 13.8 ns, revealed by time-resolved PL (TRPL). The dark current was typically around 8.8 × 10-8 A. Broad photoresponsivity between 540 and 875 nm reached a maximum of 3 mA/W and 16 mA/W, corresponding to a detectivity of 6 × 1010 and 1 × 1011 Jones at -1 V and 50 V, respectively. In case of on/off measurements, the rise and fall times were 0.40 s and 0.61 s or 0.62 s and 0.89 s for illumination, with 500 nm or 875 nm photons, respectively. A long-term stability test at room temperature in air confirmed the optical and structural stability of the proposed hybrid structure. This work provides insights into the physical mechanisms of new hybrid junctions for high-performance photodetectors.
RESUMO
Biosensors are smart devices that convert biochemical responses to electrical signals. Designing biosensor devices with high sensitivity and selectivity is of great interest because of their wide range of functional operations. However, the major obstacles in the practical application of biosensors are their binding affinity toward biomolecules and the conversion and amplification of the interaction to various signals such as electrical, optical, gravimetric, and electrochemical signals. Additionally, the enhancement of sensitivity, limit of detection, time of response, reproducibility, and stability are considerable challenges when designing an efficient biosensor. In this regard, hybrid composites have high sensitivity, selectivity, thermal stability, and tunable electrical conductivities. The integration of phthalocyanines (Pcs) with conductive materials such as carbon nanomaterials or metal nanoparticles (MNPs) improves the electrochemical response, signal amplification, and stability of biosensors. This review explores recent advancements in hybrid Pcs for biomolecule detection. Herein, we discuss the synthetic strategies, material properties, working mechanisms, and integration methods for designing electrochemical biosensors. Finally, the challenges and future directions of hybrid Pc composites for biosensor applications are discussed.
RESUMO
The development of functional nanomaterials is crucial for advancing personalized and precision medicine. Graphene-metal nanocrystal hybrid materials not only possess the intrinsic advantages of graphene-based materials but also exhibit additional optical, magnetic, and catalytic properties of various metal nanocrystals, showing great synergies in bioapplications, including biosensing, bioimaging, and disease treatments. In this Perspective, we discuss the advantages and design principles of graphene-metal nanocrystal hybrid materials and provide an overview of their applications in biological fields. Finally, we highlight the challenges and future directions for their practical implementation.
Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Grafite/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , AnimaisRESUMO
This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2'-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2'-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron-hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices.
RESUMO
This study involves the synthesis of an organic-inorganic hybrid material consisting of Ti/Si-terephthalate (Ti-TPA-Si) in a 1:1:1 ratio using sol-gel method and its reaction with cellulose and chitosan (Ti-TPA-Si-C and Ti-TPA-Si-CS). Characterization techniques such as XRD, FTIR, SEM, EDS, XPS, BET, TGA, and DTA were used. The incorporation of biopolymers (cellulose and chitosan) into the Ti/Si-terephthalate structure improved the morphology and textural properties of the hybrid materials, leading to increased adsorption capacity and sustainability. Adsorption experiments reveal that Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS hybrid materials exhibit a high affinity towards tetracycline, achieving remarkable adsorption efficiencies of 88.27, 89.60, and 88.98 %, respectively. Isotherm studies indicate that the adsorption process follows both Langmuir (R2 = 0.971, 0.990, and 0.994) and Dubinin-Radushkevich (R2 = 0.922, 0.965, and 0.949) isotherm models. According to the Langmuir model, the maximum adsorption capacity (qm) of Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS adsorbents was found to be 24.10, 33.56, and 26.59 mg/g, respectively. Kinetic studies indicate that the adsorption process follows both pseudo-second-order (R2 = 0.998, 0.984, and 0.989) and intra-particle diffusion (R2 = 0.995, 0.994, and 0.988) models. Thermodynamic studies reveal that adsorption processes are spontaneous and endothermic in nature. Reusability studies demonstrate their potential for repeated use without significant loss in performance.
RESUMO
TiO2 nanoparticles loaded with pistachio shell lignin (8 % and 29 % w/w) were prepared by a hydrothermal wet chemistry approach. The efficient interaction at the molecular level of the biomacromolecule and inorganic component was demonstrated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible (UV-Vis), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) analysis. The synergistic combination of lignin and TiO2 nanoparticles played a key role in the functional properties of the hybrid material, which exhibited boosted features compared to the separate organic and inorganic phase. In particular, the hybrid TiO2-lignin nanoparticles showed a broader UV-Vis protection range and remarkable antioxidant performance in aqueous media. They could also better protect human skin explants from the DNA damaging effect of UV radiations compared to TiO2 as indicated by lower levels of p-H2A.X, a marker of DNA damage, at 6 h from exposure. In addition, the samples could protect the skin against the structural damage occurring 24 h post UV radiations by preventing the loss of keratin 10. These results open new perspectives in the exploitation of food-waste derived phenolic polymers for the design of efficient antioxidant materials for skin photoprotection in a circular economy perspective.
RESUMO
Resveratrol (RSV), a bioactive natural phenolic compound found in plants, fruits, and vegetables, has garnered significant attention in pharmaceutical, food, and cosmetic industries due to its remarkable biological and pharmacological activities. Despite its potential in treating various diseases, its poor pharmacokinetic properties, such as low solubility, stability, bioavailability, and susceptibility to rapid oxidation, limit its biomedical applications. Recent advancements focus on incorporating resveratrol into innovative materials like nanoparticles, polymers, and bio-ceramics to enhance its properties and bioavailability. In this review, an exhaustive literature search was conducted from PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases to explore these advancements, to compares conventional and innovative extraction methods, and to highlights resveratrol's therapeutic potential, including its anti-inflammatory, anti-oxidative, anti-cancerogenic, antidiabetic, neuroprotective, and cardio-protective properties. Additionally, we discuss the challenges and prospects of hybrid materials combining resveratrol with nanoparticles, polymers, and bio-ceramics for therapeutic applications. Rigorous studies are still needed to confirm their clinical efficacy.
RESUMO
Photoelectrochemical devices require solid anodes and cathodes for the easy assembling of the whole cell and thus redox catalysts need to be deposited on the electrodes. Typical catalyst deposition involves drop casting, spin coating, doctor blading or related techniques to generate modified electrodes where the active catalyst in contact with the electrolyte is only a very small fraction of the deposited mass. We have developed a methodology where the redox catalyst is deposited at the electrode based on supramolecular interactions, namely CH-π and π-π between the catalyst and the surface. This generates a very well-defined catalysts-surface structure and electroactivity, together with a very large catalytic response. This approach represents a new anchoring strategy that can be applied to catalytic redox reactions in heterogeneous phase and compared to traditional methods involves about 4-5 orders of magnitude less mass deposition to achieve comparable activity and with very well-behaved electroactivity and stability.
RESUMO
BACKGROUNDS: This study aimed to compare the effects of different energy drinks on the surface roughness, weight loss, and color change of various bioactive restorative materials. METHODS: Charisma Diamond One, Activa™ BioActive Restorative, Activa™ Presto™ and Equia Forte HT Fil samples were prepared using plastic molds (8 × 2 mm) (n = 10/groups). After polishing, the samples were weighed, their colors were recorded using a spectrophotometer according to the CIEDE2000 system, and their surface roughness was measured using a profilometer. The samples were immersed in Powerade, Burn, Monster and distilled water for 7 days. After immersion, all the measurements were repeated. Statistical analyses were performed using the Wilcoxon signed-rank test and the MannâWhitney U test (p < 0.05). RESULTS: All energy drinks roughened the surface of Equia Forte HT Fil (p < 0.05). Powerade and Monster increased the Ra of all materials after 7 days (p < 0.05). Burns affected all materials except the Activa Bioactive (p < 0.05). Significant weight loss was observed in the Equia Forte group after immersion in all the energy drinks, whereas no weight loss was observed in the other groups. According to the color measurements, ΔE00 values were greater in the Burn and Monster groups, except for the Equia Forte HT Fil group (p < 0.05). CONCLUSION: Energy drinks affected bioactive materials to varying degrees. The glass hybrid material was the most affected, and the bioactive restorative materials based on the resin matrix were the least.
Assuntos
Materiais Dentários , Bebidas Energéticas , Propriedades de Superfície , Bebidas Energéticas/análise , Materiais Dentários/química , Teste de Materiais , Cor , Restauração Dentária Permanente , Resinas Compostas/química , Espectrofotometria , HumanosRESUMO
2D nanomaterials with ångström-scale thicknesses offer a unique platform for confining molecules at an unprecedentedly small scale, presenting novel opportunities for modulating material properties and probing microscopic phenomena. In this study, mesogen-tethered polyhedral oligomeric silsesquioxane (POSS) amphiphiles with varying numbers of mesogenic tails to systematically influence molecular self-assembly and the architecture of the ensuing supramolecular structures, are synthesized. These organic-inorganic hybrid amphiphiles facilitate precise spatial arrangement and directional alignment of the primary molecular units within highly ordered supramolecular structures. The correlation between molecular design and the formation of superlattices through comprehensive structural analyses, incorporating molecular thermodynamics and kinetics, is explored. The distinct intermolecular interactions of the POSS core and the mesogenic tails drive the preferential formation of a 2D inorganic sublattice while simultaneously guiding the hierarchical assembly of organic lamellae via soft epitaxy. The findings reveal the intricate balance between shape, size, and interaction strengths of the inorganic and organic components, and how these factors collectively influence the structural hierarchy of the superstructures, which consist of multiple sublattices. By controlling this unique molecular behavior, it is possible to modulate or maximize the anisotropy of optical, mechanical, and electrical properties at the sub-nanometer scale for nanotechnology applications.
RESUMO
Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.
RESUMO
In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.
RESUMO
A validation of the factorial, Taguchi and response surface methodology (RSM) statistical models is developed for the analysis of mechanical tests of hybrid materials, with an epoxy matrix reinforced with natural Chambira fiber and synthetic fibers of glass, carbon and Kevlar. These materials present variability in their properties, so for the validation of the models a research methodology with a quantitative approach based on the statistical process of the design of experiments (DOE) was adopted; for which the sampling is in relation to the design matrix using 90 treatments with three replicates for each of the study variables. The analysis of the models reveals that the greatest pressure is obtained by considering only the source elements that are significant; this is reflected in the increase in the coefficient of determination and in the predictive capacity. The modified factorial model is best suited for the research, since it has an R2 higher than 90% in almost all the evaluated mechanical properties of the material; with respect to the combined optimization of the variables, the model showed an overall contribution of 99.73% and global desirability of 0.7537. These results highlight the effectiveness of the modified factorial model in the analysis of hybrid materials.
RESUMO
In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.
RESUMO
The optimal conditions of applied factors to reuse Aluminium AA6061 scraps are (450, 500, and 550) °C preheating temperature, (1-15) % Boron Carbide (B4C), and Zirconium (ZrO2) hybrid reinforced particles at 120 min forging time via Hot Forging (HF) process. The response surface methodology (RSM) and machine learning (ML) were established for the optimisations and comparisons towards materials strength structure. The Ultimate Tensile Strength (UTS) strength and Microhardness (MH) were significantly increased by increasing the processed temperature and reinforced particles because of the material dispersion strengthening. The high melting point of particles caused impedance movements of aluminium ceramics dislocations which need higher plastic deformation force and hence increased the material's mechanical and physical properties. But, beyond Al/10 % B4C + 10 % ZrO2 the strength and hardness were decreased due to more particle agglomeration distribution. The optimisation tools of both RSM and ML show high agreement between the reported results of applied parameters towards the materials' strength characterisation. The microstructure analysis of Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM) provides insights mapping behavioural characterisation supports related to strength and hardness properties. The distribution of different volumes of ceramic particle proportion was highlighted. The environmental impacts were also analysed by employing a life cycle assessment (LCA) to identify energy savings because of its fewer processing steps and produce excellent hybrid materials properties.
RESUMO
In the paper, high specific surface area (SSA) mono and bimetallic zeolitic imidazolate frameworks (ZIFs) based on zinc and cobalt metals are successfully synthesized at room temperature using different ratios of Zn to Co salts as precursors and ammonium as a solvent to tailor the properties of the produced ZIF and optimize the efficiency of the particles in water treatment from dye and copper ions, simultaneously. The results declare that monometallic and bimetallic ZIF microparticles are formed using ammonium and the tuning of pore sizes and also increasing the SSA by inserting the Co ions in Zn-ZIF particles is accessible. It leads to a significant increase in the thermal stability of bimetallic Zn/Co-ZIF and the appearance of an absorption band in the visible region due to the existence of Co in the bimetallic structures. The bandgap energies of bimetallic ZIFs are close to that of the monometallic Co-ZIF-8, indicating controlling the bandgap by Co ZIF. Furthermore, the ZIFs samples are applied for water treatment from copper ions (10 and 184 ppm) and methylene blue (10 ppm) under visible irradiation and the optimized multifunctional bimetallic Zn/Co ZIF is introduced as an admirable candidate for water treatment even in acidic conditions.