Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Cyst Fibros ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353741

RESUMO

BACKGROUND: Monitoring multiple-breath washout (MBW) of a xenon tracer using magnetic resonance imaging (MBW Xe-MRI) provides quantitative regional measures of gas washout (fractional ventilation, FV) and spatial ventilation heterogeneity (coefficient of variation, CoVFV) in pediatric CF lung disease, but has yet to be evaluated in an interventional setting. METHODS: 12 pediatric CF participants (median age 15.3 ± 2 years) completed MBW Xe-MRI, pulmonary function tests (PFTs) (spirometry, N2 MBW for lung clearance index (LCI)) and single-breath Xe-MRI ventilation defect percent (VDP) measurements at baseline and 1-month post-initiation of elexacaftor/tezacaftor/ivacaftor (ETI) therapy. FV maps were calculated from MBW Xe-MRI washout images, and CoVFV maps were derived from FV maps. Significant changes between visits were determined using a paired Wilcoxon signed-rank test. For correlations between absolute changes, Pearson's correlation was used. RESULTS: All measures changed significantly 1-month post-ETI therapy compared to baseline. For MRI metrics, median [IQR] VDP was significantly (P < 0.001) lower at 1 month (8.0 [3.7 12.4]) compared to baseline (17.8 [8.3 22.5]), FV was significantly (P < 0.05) higher at 1 month (0.42 [0.41 0.46]) compared to baseline (0.38 [0.33 0.44]), and CoVFV was significantly (P < 0.001) lower at 1 month (0.06 [0.05 0.07]) compared to baseline (0.09 [0.08 0.12]). Both absolute and relative differences in CoVFV and LCI were found to correlate highly (R = 0.92, P < 0.0001 and R = 0.91, P < 0.0001, respectively). CONCLUSIONS: Functional information derived from MBW Xe-MRI, particularly CoVFV, can be used to assess regional lung function in pediatric CF patients in an interventional setting and may be complementary to VDP and pulmonary function tests.

2.
Magn Reson Med ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323101

RESUMO

PURPOSE: Three-dimensional hyperpolarized 129Xe gas exchange imaging suffers from low SNR and long breath-holds, which could be improved using compressed sensing (CS). The purpose of this work was to assess whether gas exchange ratio maps are quantitatively preserved in CS-accelerated dissolved-phase 129Xe imaging and to investigate the feasibility of CS-dissolved 129Xe imaging with reduced-cost natural abundance (NA) xenon. METHODS: 129Xe gas exchange imaging was performed at 1.5 T with a multi-echo spectroscopic imaging sequence. A CS reconstruction with an acceleration factor of 2 was compared retrospectively with conventional gridding reconstruction in a cohort of 16 healthy volunteers, 5 chronic obstructive pulmonary disease patients, and 23 patients who were hospitalized following COVID-19 infection. Metrics of comparison included normalized mean absolute error, mean gas exchange ratio, and red blood cell (RBC) image SNR. Dissolved 129Xe CS imaging with NA xenon was assessed in 4 healthy volunteers. RESULTS: CS reconstruction enabled acquisition time to be halved, and it reduced background noise. Median RBC SNR increased from 6 (2-18) to 11 (2-100) with CS, and there was strong agreement between CS and gridding mean ratio map values (R2 = 0.99). Image fidelity was maintained for gridding RBC SNR > 5, but below this, normalized mean absolute error increased nonlinearly with decreasing SNR. CS increased the mean SNR of NA 129Xe images 3-fold. CONCLUSION: CS reconstruction of dissolved 129Xe imaging improved image quality with decreased scan time, while preserving key gas exchange metrics. This will benefit patients with breathlessness and/or low gas transfer and shows promise for NA-dissolved 129Xe imaging.

3.
Anal Sci ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254883

RESUMO

129Xe NMR spectroscopy of polymers can provide important information on void spaces, sometimes called free volume, in polymers. Unfortunately, the spectroscopy's low sensitivity has limited its widespread use in both academic and industrial research. In order to overcome such a difficult situation, hyper-CEST method which employs hyperpolarization and CEST techniques, is examined after the introduction of recirculation and subtraction modes. Alongside the incorporated stopped-flow technique, these modes were very efficient in detecting very weak hidden signals from cellulose nanofiber (CNF) and silk fibroin (SF) films and in discussing the void space in these polymers. From the analysis of detailed saturation frequency dependence in the increment of 100 Hz, the chemical shifts of hidden peaks were successfully determined to give reasonable values for the size of void space in CNF and SF. Application on thermoplastic polyurethane film also supported our method of analysis. The subtraction mode was very efficient in judging the presence or absence of any peak at a fixed saturation frequency. These facts support that the mode will surely be useful in the future exploratory study of very weak hidden signals.

4.
Magn Reson Med ; 92(6): 2546-2559, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39155454

RESUMO

PURPOSE: To evaluate the feasibility and utility of a deep learning (DL)-based reconstruction for improving the SNR of hyperpolarized 129Xe lung ventilation MRI. METHODS: 129Xe lung ventilation MRI data acquired from patients with asthma and/or chronic obstructive pulmonary disease (COPD) were retrospectively reconstructed with a commercial DL reconstruction pipeline at five different denoising levels. Quantitative imaging metrics of lung ventilation including ventilation defect percentage (VDP) and ventilation heterogeneity index (VHI) were compared between each set of DL-reconstructed images and alternative denoising strategies including: filtering, total variation denoising and higher-order singular value decomposition. Structural similarity between the denoised and original images was assessed. In a prospective study, the feasibility of using SNR gains from DL reconstruction to allow natural-abundance xenon MRI was evaluated in healthy volunteers. RESULTS: 129Xe ventilation image SNR was improved with DL reconstruction when compared with conventionally reconstructed images. In patients with asthma and/or COPD, DL-reconstructed images exhibited a slight positive bias in ventilation defect percentage (1.3% at 75% denoising) and ventilation heterogeneity index (˜1.4) when compared with conventionally reconstructed images. Additionally, DL-reconstructed images preserved structural similarity more effectively than data denoised using alternative approaches. DL reconstruction greatly improved image SNR (greater than threefold), to a level that 129Xe ventilation imaging using natural-abundance xenon appears feasible. CONCLUSION: DL-based image reconstruction significantly improves 129Xe ventilation image SNR, preserves structural similarity, and leads to a minor bias in ventilation metrics that can be attributed to differences in the image sharpness. This tool should help facilitate cost-effective 129Xe ventilation imaging with natural-abundance xenon in the future.


Assuntos
Asma , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Pulmão , Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica , Razão Sinal-Ruído , Isótopos de Xenônio , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Estudos Prospectivos , Processamento de Imagem Assistida por Computador/métodos , Asma/diagnóstico por imagem , Adulto , Estudos Retrospectivos , Idoso , Estudos de Viabilidade
5.
J Cyst Fibros ; 23(5): 926-935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997823

RESUMO

RATIONALE: Cystic Fibrosis (CF) progresses through recurrent infection and inflammation, causing permanent lung function loss and airway remodeling. CT scans reveal abnormally low-density lung parenchyma in CF, but its microstructural nature remains insufficiently explored due to clinical CT limitations. To this end, diffusion-weighted 129Xe MRI is a non-invasive and validated measure of lung microstructure. In this work, we investigate microstructural changes in people with CF (pwCF) relative to age-matched, healthy subjects using comprehensive imaging and analysis involving pulmonary-function tests (PFTs), and 129Xe MRI. METHODS: 38 healthy subjects (age 6-40; 17.2 ± 9.5 years) and 39 pwCF (age 6-40; 15.6 ± 8.0 years) underwent 129Xe-diffusion MRI and PFTs. The distribution of diffusion measurements (i.e., apparent diffusion coefficients (ADC) and morphometric parameters) was assessed via linear binning (LB). The resulting volume percentages of bins were compared between controls and pwCF. Mean ADC and morphometric parameters were also correlated with PFTs. RESULTS: Mean whole-lung ADC correlated significantly with age (P < 0.001) for both controls and CF, and with PFTs (P < 0.05) specifically for pwCF. Although there was no significant difference in mean ADC between controls and pwCF (P = 0.334), age-adjusted LB indicated significant voxel-level diffusion (i.e., ADC and morphometric parameters) differences in pwCF compared to controls (P < 0.05). CONCLUSIONS: 129Xe diffusion MRI revealed microstructural abnormalities in CF lung disease. Smaller microstructural size may reflect compression from overall higher lung density due to interstitial inflammation, fibrosis, or other pathological changes. While elevated microstructural size may indicate emphysema-like remodeling due to chronic inflammation and infection.


Assuntos
Fibrose Cística , Imagem de Difusão por Ressonância Magnética , Testes de Função Respiratória , Isótopos de Xenônio , Humanos , Fibrose Cística/complicações , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/fisiopatologia , Masculino , Feminino , Imagem de Difusão por Ressonância Magnética/métodos , Adolescente , Testes de Função Respiratória/métodos , Adulto , Criança , Alvéolos Pulmonares/diagnóstico por imagem , Alvéolos Pulmonares/patologia
6.
J Magn Reson Imaging ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935670

RESUMO

BACKGROUND: Lung compliance, a biomarker of pulmonary fibrosis, is generally measured globally. Hyperpolarized 129Xe gas MRI offers the potential to evaluate lung compliance regionally, allowing for visualization of changes in lung compliance associated with fibrosis. PURPOSE: To assess global and regional lung compliance in a rat model of pulmonary fibrosis using hyperpolarized 129Xe gas MRI. STUDY TYPE: Prospective. ANIMAL MODEL: Twenty Sprague-Dawley male rats with bleomycin-induced fibrosis model (N = 10) and saline-treated controls (N = 10). FIELD STRENGTH/SEQUENCE: 7-T, fast low-angle shot (FLASH) sequence. ASSESSMENT: Lung compliance was determined by fitting lung volumes derived from segmented 129Xe MRI with an iterative selection method, to corresponding airway pressures. Similarly, lung compliance was obtained with computed tomography for cross-validation. Direction-dependencies of lung compliance were characterized by regional lung compliance ratios (R) in different directions. Pulmonary function tests (PFTs) and histological analysis were used to validate the pulmonary fibrosis model and assess its correlation with 129Xe lung compliance. STATISTICAL TESTS: Shapiro-Wilk tests, unpaired and paired t-tests, Mann-Whitney U and Wilcoxon signed-rank tests, and Pearson correlation coefficients. P < 0.05 was considered statistically significant. RESULTS: For the entire lung, the global and regional lung compliance measured with 129Xe gas MRI showed significant differences between the groups, and correlated with the global lung compliance measured using PFTs (global: r = 0.891; regional: r = 0.873). Additionally, for the control group, significant difference was found in mean regional compliance between areas, eg, 0.37 (0.32, 0.39) × 10-4 mL/cm H2O and 0.47 (0.41, 0.56) × 10-4 mL/cm H2O for apical and basal lung, respectively. The apical-basal direction R was 1.12 ± 0.09 and 1.35 ± 0.13 for fibrosis and control groups, respectively, indicating a significant difference. DATA CONCLUSION: Our findings demonstrate the feasibility of using hyperpolarized gas MRI to assess regional lung compliance. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

7.
Magn Reson Med ; 92(4): 1363-1375, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38860514

RESUMO

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.


Assuntos
Algoritmos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Razão Sinal-Ruído , Feminino , Imageamento Tridimensional/métodos , Adulto , Imagens de Fantasmas , Artefatos , Compressão de Dados/métodos , Reprodutibilidade dos Testes , Pulmão/diagnóstico por imagem , Meios de Contraste/química
8.
Magn Reson Med Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839300

RESUMO

PURPOSE: Chronic obstructive pulmonary disease (COPD) is a complex multisystem disease associated with comorbidities outside the lungs. The aim of this study was to measure changes in metrics of pulmonary gas exchange function and brain tissue metabolism in a mouse model of COPD using hyperpolarized 129Xe (HP 129Xe) MRI/MR spectroscopy (MRS) and investigate the relationship between the metrics of lung and brain. METHODS: COPD phenotypes were induced in 15 mice by 6-week administration of cigarette smoke extract (CSE) and lipopolysaccharide (LPS). A separate negative control (NC) group was formed of 6 mice administered with saline for 6 weeks. After these 6-week administrations, the pulmonary gas exchange function parameter fD (%) and the rate constant, α (s-1), which are composed of the cerebral blood flow Fi and the longitudinal relaxation rate 1/T1i in brain tissue, were evaluated by HP 129Xe MRI/MRS. RESULTS: The fD of CSE-LPS mice was significantly lower than that of NC mice, which was in parallel with an increase in bronchial wall thickness. The α in the CSE-LPS mice decreased with the decrease of fD in contrast to the trend in the NC mice. To further elucidate the opposed trend, the contribution of T1i was separately determined by measuring Fi. The T1i in the CSE-LPS mice was found to correlate negatively with fD as opposed to the positive trend in the NC mice. The opposite trend in T1i between CSE-LPS and NC mice suggests hypoxia in the brain, which is induced by the impaired oxygen uptake as indicated by the reduced fD. CONCLUSION: This study demonstrates the feasibility of using HP 129Xe MRI/MRS to study pathological mechanisms of brain dysfunction in comorbidities with COPD.

9.
Magn Reson Med ; 92(4): 1471-1483, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38726472

RESUMO

PURPOSE: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS: Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS: Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION: Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Imageamento por Ressonância Magnética/métodos , Idoso , Pulmão/diagnóstico por imagem , Adulto Jovem , Troca Gasosa Pulmonar , Fatores Sexuais , Fatores Etários , Medidas de Volume Pulmonar , Eritrócitos
10.
Magn Reson Med ; 92(3): 956-966, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38770624

RESUMO

PURPOSE: To demonstrate the feasibility of zigzag sampling for 3D rapid hyperpolarized 129Xe ventilation MRI in human. METHODS: Zigzag sampling in one direction was combined with gradient-recalled echo sequence (GRE-zigzag-Y) to acquire hyperpolarized 129Xe ventilation images. Image quality was compared with a balanced SSFP (bSSFP) sequence with the same spatial resolution for 12 healthy volunteers (HVs). For another 8 HVs and 9 discharged coronavirus disease 2019 subjects, isotropic resolution 129Xe ventilation images were acquired using zigzag sampling in two directions through GRE-zigzag-YZ. 129Xe ventilation defect percent (VDP) was quantified for GRE-zigzag-YZ and bSSFP acquisitions. Relationships and agreement between these VDP measurements were evaluated using Pearson correlation coefficient (r) and Bland-Altman analysis. RESULTS: For 12 HVs, GRE-zigzag-Y and bSSFP required 2.2 s and 10.5 s, respectively, to acquire 129Xe images with a spatial resolution of 3.96 × 3.96 × 10.5 mm3. Structural similarity index, mean absolute error, and Dice similarity coefficient between the two sets of images and ventilated lung regions were 0.85 ± 0.03, 0.0015 ± 0.0001, and 0.91 ± 0.02, respectively. For another 8 HVs and 9 coronavirus disease 2019 subjects, 129Xe images with a nominal spatial resolution of 2.5 × 2.5 × 2.5 mm3 were acquired within 5.5 s per subject using GRE-zigzag-YZ. VDP provided by GRE-zigzag-YZ was strongly correlated (R2 = 0.93, p < 0.0001) with that generated by bSSFP with minimal biases (bias = -0.005%, 95% limit-of-agreement = [-0.414%, 0.424%]). CONCLUSION: Zigzag sampling combined with GRE sequence provides a way for rapid 129Xe ventilation imaging.


Assuntos
COVID-19 , Pulmão , Imageamento por Ressonância Magnética , SARS-CoV-2 , Isótopos de Xenônio , Humanos , COVID-19/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Estudos de Viabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA