Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant J ; 119(2): 645-657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761364

RESUMO

The interplay between microRNAs (miRNAs) and phytohormones allows plants to integrate multiple internal and external signals to optimize their survival of different environmental conditions. Here, we report that miR394 and its target gene LEAF CURLING RESPONSIVENESS (LCR), which are transcriptionally responsive to BR, participate in BR signaling to regulate hypocotyl elongation in Arabidopsis thaliana. Phenotypic analysis of various transgenic and mutant lines revealed that miR394 negatively regulates BR signaling during hypocotyl elongation, whereas LCR positively regulates this process. Genetically, miR394 functions upstream of BRASSINOSTEROID INSENSITIVE2 (BIN2), BRASSINAZOLEs RESISTANT1 (BZR1), and BRI1-EMS-SUPPRESSOR1 (BES1), but interacts with BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1 SUPRESSOR PROTEIN (BSU1). RNA-sequencing analysis suggested that miR394 inhibits BR signaling through BIN2, as miR394 regulates a significant number of genes in common with BIN2. Additionally, miR394 increases the accumulation of BIN2 but decreases the accumulation of BZR1 and BES1, which are phosphorylated by BIN2. MiR394 also represses the transcription of PACLOBUTRAZOL RESISTANCE1/5/6 and EXPANSIN8, key genes that regulate hypocotyl elongation and are targets of BZR1/BES1. These findings reveal a new role for a miRNA in BR signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Hipocótilo , MicroRNAs , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases
2.
Plant Commun ; 5(7): 100880, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38486455

RESUMO

Arabidopsis plants adapt to warm temperatures by promoting hypocotyl growth primarily through the basic helix-loop-helix transcription factor PIF4 and its downstream genes involved in auxin responses, which enhance cell division. In the current study, we discovered that cell wall-related calcium-binding protein 2 (CCaP2) and its paralogs CCaP1 and CCaP3 function as positive regulators of thermo-responsive hypocotyl growth by promoting cell elongation in Arabidopsis. Interestingly, mutations in CCaP1/CCaP2/CCaP3 do not affect the expression of PIF4-regulated classic downstream genes. However, they do noticeably reduce the expression of xyloglucan endotransglucosylase/hydrolase genes, which are involved in cell wall modification. We also found that CCaP1/CCaP2/CCaP3 are predominantly localized to the plasma membrane, where they interact with the plasma membrane H+-ATPases AHA1/AHA2. Furthermore, we observed that vanadate-sensitive H+-ATPase activity and cell wall pectin and hemicellulose contents are significantly increased in wild-type plants grown at warm temperatures compared with those grown at normal growth temperatures, but these changes are not evident in the ccap1-1 ccap2-1 ccap3-1 triple mutant. Overall, our findings demonstrate that CCaP1/CCaP2/CCaP3 play an important role in controlling thermo-responsive hypocotyl growth and provide new insights into the alternative pathway regulating hypocotyl growth at warm temperatures through cell wall modification mediated by CCaP1/CCaP2/CCaP3.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Parede Celular , ATPases Translocadoras de Prótons , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética
3.
J Exp Bot ; 74(22): 7015-7033, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422862

RESUMO

Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Temperatura , Arabidopsis/metabolismo , Hipocótilo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética
4.
J Exp Bot ; 74(15): 4520-4539, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37201922

RESUMO

In Arabidopsis, the photoreceptors phytochrome B (PhyB) and UV-B resistance 8 (UVR8) mediate light responses that play a major role in regulating photomorphogenic hypocotyl growth, but how they crosstalk to coordinate this process is not well understood. Here we report map-based cloning and functional characterization of an ultraviolet (UV)-B-insensitive, long-hypocotyl mutant, lh1, and a wild-type-like mutant, lh2, in cucumber (Cucumis sativus), which show defective CsPhyB and GA oxidase2 (CsGA20ox-2), a key gibberellic acid (GA) biosynthesis enzyme, respectively. The lh2 mutation was epistatic to lh1 and partly suppressed the long-hypocotyl phenotype in the lh1lh2 double mutant. We identified phytochrome interacting factor (PIF) CsPIF3 as playing a critical role in integrating the red/far-red and UV-B light responses for hypocotyl growth. We show that two modules, CsPhyB-CsPIF3-CsGA20ox-2-DELLA and CsPIF3-auxin response factor 18 (CsARF18), mediate CsPhyB-regulated hypocotyl elongation through GA and auxin pathways, respectively, in which CsPIF3 binds to the G/E-box motifs in the promoters of CsGA20ox-2 and CsARF18 to regulate their expression. We also identified a new physical interaction between CsPIF3 and CsUVR8 mediating CsPhyB-dependent, UV-B-induced hypocotyl growth inhibition. Our work suggests that hypocotyl growth in cucumber involves a complex interplay of multiple photoreceptor- and phytohormone-mediated signaling pathways that show both conservation with and divergence from those in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/metabolismo , Hipocótilo , Cucumis sativus/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais , Luz , Mutação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
5.
Plant Physiol Biochem ; 196: 1-9, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680948

RESUMO

Nitric oxide (NO), a small signaling gas molecule, participates in several growth and developmental processes in plants. However, how NO regulates cell wall biosynthesis remains unclear. Here, we demonstrate a positive effect of NO on cellulose content that may be related to S-nitrosylation of cellulose synthase 1 (CESA1) and CESA9. Two S-nitrosylated cysteine (Cys) residues, Cys562 and Cys641, which are exposed on the surface of CESA1 and CESA9 and located in the cellulose synthase catalytic domain, were identified to be S-nitrosylated. Meanwhile, Cys641 was located on the binding surface of CESA1 and CESA9, and Cys562 was very close to the binding surface. Cellulose synthase complexes (CSCs) dynamics are closely associated with cellulose content. S-nitrosylation of CESA1 and CESA9 improved particles mobility and thus increased the accumulation of cellulose in Arabidopsis hypocotyl cells. An increase in hemicellulose content as well as an alteration in pectin content facilitated cell wall extension and contributed to cell growth, finally promoting elongation of Arabidopsis hypocotyls. Overall, our work provides a path to investigate the way NO affects the cellulose content of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hipocótilo/metabolismo , Óxido Nítrico/metabolismo , Celulose/metabolismo , Mutação , Parede Celular/metabolismo
6.
New Phytol ; 237(1): 177-191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028981

RESUMO

Global warming has profound impact on growth and development, and plants constantly adjust their internal circadian clock to cope with external environment. However, how clock-associated genes fine-tune thermoresponsive growth in plants is little understood. We found that loss-of-function mutation of REVEILLE5 (RVE5) reduces the expression of circadian gene EARLY FLOWERING 4 (ELF4) in Arabidopsis, and confers accelerated hypocotyl growth under warm-temperature conditions. Both RVE5 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) accumulate at warm temperatures and bind to the same EE cis-element presented on ELF4 promoter, but the transcriptional repression activity of RVE5 is weaker than that of CCA1. The binding of CCA1 to ELF4 promoter is enhanced in the rve5-2 mutant at warm temperatures, and overexpression of ELF4 in the rve5-2 mutant background suppresses the rve5-2 mutant phenotype at warm temperatures. Therefore, the transcriptional repressor RVE5 finetunes ELF4 expression via competing at a cis-element with the stronger transcriptional repressor CCA1 at warm temperatures. Such a competition-attenuation mechanism provides a balancing system for modulating the level of ELF4 and thermoresponsive hypocotyl growth under warm-temperature conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Hipocótilo , Relógios Circadianos/genética , Ritmo Circadiano/genética
7.
Photochem Photobiol Sci ; 21(11): 1869-1880, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35867260

RESUMO

Plant growth depends on the supply of carbohydrates produced by photosynthesis. Exogenously applied sucrose promotes the growth of the hypocotyl in Arabidopsis thaliana seedlings grown under short days. Whether this effect of sucrose is stronger under the environmental conditions where the light input for photosynthesis is limiting remains unknown. We characterised the effects of exogenous sucrose on hypocotyl growth rates under light compared to simulated shade, during different portions of the daily cycle. The strongest effects of exogenous sucrose occurred under shade and during the night; i.e., the conditions where there is reduced or no photosynthesis. Conversely, a faster hypocotyl growth rate, predicted to enhance the demand of carbohydrates, did not associate to a stronger sucrose effect. The early flowering 3 (elf3) mutation strongly enhanced the impact of sucrose on hypocotyl growth during the night of a white-light day. This effect occurred under short, but not under long days. The addition of sucrose enhanced the fluorescence intensity of ELF3 nuclear speckles. The elf3 mutant showed increased abundance of PHYTOCHROME INTERACTING FACTOR4 (PIF4), which is a transcription factor required for a full response to sucrose. Sucrose increased PIF4 protein abundance by post-transcriptional mechanisms. Under shade, elf3 showed enhanced daytime and reduced nighttime effects of sucrose. We conclude that ELF3 modifies the responsivity to sucrose according to the time of the daily cycle and the prevailing light or shade conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sacarose/farmacologia , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Fitocromo/metabolismo , Luz
8.
J Integr Plant Biol ; 64(7): 1310-1324, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603836

RESUMO

The circadian clock maintains the daily rhythms of plant growth and anticipates predictable ambient temperature cycles. The evening complex (EC), comprising EARLY FLOWERING 3 (ELF3), ELF4, and LUX ARRHYTHMO, plays an essential role in suppressing thermoresponsive hypocotyl growth by negatively regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) activity and its downstream targets in Arabidopsis thaliana. However, how EC activity is attenuated by warm temperatures remains unclear. Here, we demonstrate that warm temperature-induced REVEILLE 7 (RVE7) fine-tunes thermoresponsive growth in Arabidopsis by repressing ELF4 expression. RVE7 transcript and RVE7 protein levels increased in response to warm temperatures. Under warm temperature conditions, an rve7 loss-of-function mutant had shorter hypocotyls, while overexpressing RVE7 promoted hypocotyl elongation. PIF4 accumulation and downstream transcriptional effects were reduced in the rve7 mutant but enhanced in RVE7 overexpression plants under warm conditions. RVE7 associates with the Evening Element in the ELF4 promoter and directly represses its transcription. ELF4 is epistatic to RVE7, and overexpressing ELF4 suppressed the phenotype of the RVE7 overexpression line under warm temperature conditions. Together, our results identify RVE7 as an important regulator of thermoresponsive growth that functions (in part) by controlling ELF4 transcription, highlighting the importance of ELF4 for thermomorphogenesis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Hipocótilo/metabolismo , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
In Silico Plants ; 4(1): diac001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369361

RESUMO

To meet the ever-increasing global food demand, the food production rate needs to be increased significantly in the near future. Speed breeding is considered as a promising agricultural technology solution to achieve the zero-hunger vision as specified in the United Nations Sustainable Development Goal 2. In speed breeding, the photoperiod of the artificial light has been manipulated to enhance crop productivity. In particular, regulating the photoperiod of different light qualities rather than solely white light can further improve speed breading. However, identifying the optimal light quality and the associated photoperiod simultaneously remains a challenging open problem due to complex interactions between multiple photoreceptors and proteins controlling plant growth. To tackle this, we develop a first comprehensive model describing the profound effect of multiple light qualities with different photoperiods on plant growth (i.e. hypocotyl growth). The model predicts that hypocotyls elongated more under red light compared to both red and blue light. Drawing similar findings from previous related studies, we propose that this might result from the competitive binding of red and blue light receptors, primarily Phytochrome B (phyB) and Cryptochrome 1 (cry1) for the core photomorphogenic regulator, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This prediction is validated through an experimental study on Arabidopsis thaliana. Our work proposes a potential molecular mechanism underlying plant growth under different light qualities and ultimately suggests an optimal breeding protocol that takes into account light quality.

10.
Mol Cells ; 45(4): 243-256, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35249891

RESUMO

Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Front Plant Sci ; 12: 753148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603364

RESUMO

Plants rapidly adapt to elevated ambient temperature by adjusting their growth and developmental programs. To date, a number of experiments have been carried out to understand how plants sense and respond to warm temperatures. However, how warm temperature signals are relayed from thermosensors to transcriptional regulators is largely unknown. To identify new early regulators of plant thermo-responsiveness, we performed phosphoproteomic analysis using TMT (Tandem Mass Tags) labeling and phosphopeptide enrichment with Arabidopsis etiolated seedlings treated with or without 3h of warm temperatures (29°C). In total, we identified 13,160 phosphopeptides in 5,125 proteins with 10,700 quantifiable phosphorylation sites. Among them, 200 sites (180 proteins) were upregulated, while 120 sites (87 proteins) were downregulated by elevated temperature. GO (Gene Ontology) analysis indicated that phosphorelay-related molecular function was enriched among the differentially phosphorylated proteins. We selected ATL6 (ARABIDOPSIS TOXICOS EN LEVADURA 6) from them and expressed its native and phosphorylation-site mutated (S343A S357A) forms in Arabidopsis and found that the mutated form of ATL6 was less stable than that of the native form both in vivo and in cell-free degradation assays. Taken together, our data revealed extensive protein phosphorylation during thermo-responsiveness, providing new candidate proteins/genes for studying plant thermomorphogenesis in the future.

12.
Plant Signal Behav ; 16(11): 1969818, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34429034

RESUMO

Plant growth is continuously modulated by endogenous and exogenous stimuli. By no means the only, but well described, signaling molecules produced in plants and distributed through the plant body to orchestrate efficient growth are photosynthates. Light is a potent exogenous stimulus that determines, first, the rate of photosynthesis, but also the rate of plant growth. Root meristem activity is reduced with direct illumination but enhanced with increased sugar levels. With reduced cotyledon illumination, the seedling increases hypocotyl elongation until adequate light exposure is again provided. If endogenous carbon sources are limited, this leads to a temporary inhibition of root growth. Experimental growth conditions include exogenous supplementation of sucrose or glucose in addition to culturing seedlings under light exposure in Petri dishes. We compared total root length and hypocotyl elongation of Arabidopsis thaliana wild type Col-0 in response to illumination status and carbon source in the growth medium. Overall, sucrose supplementation promoted hypocotyl and root length to a greater extent than glucose supplementation. Glucose promoted root length compared to non-supplemented seedlings especially when cotyledon illumination was greatly reduced.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carbono/metabolismo , Cotilédone/crescimento & desenvolvimento , Glucose/metabolismo , Hipocótilo/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Sacarose/metabolismo , Adaptação Ocular/fisiologia , Cotilédone/metabolismo , Hipocótilo/metabolismo , Raízes de Plantas/metabolismo
13.
Plant J ; 105(2): 392-420, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32986276

RESUMO

Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.


Assuntos
Relógios Circadianos/fisiologia , Componentes Aéreos da Planta/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Luz , Redes e Vias Metabólicas , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Transdução de Sinais , Temperatura
14.
Biochem Biophys Res Commun ; 534: 857-863, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33153717

RESUMO

Plants sense the presence of competing neighboring vegetation as a change in light quality. These changes initiate shade avoidance syndrome (SAS) responses. PHYTOCHROME INTERACTING FACTORS (PIFs) are crucial factors in the SAS response. In particular, they mediate the expression of multiple phytohormones and cell expansion genes. Many positive regulatory factors in the SAS response have been identified, but the negative regulation of SAS transcription factors remains poorly understood. The functions of the short hypocotyl 2 (SHY2) transcription factor during the SAS response have not been established, although its roles in the participating hormone and stress responses are well documented. Here, the SHY2 loss-of-function (shy2-31) mutant had a longer hypocotyl, but the gain-of-function (shy2-2) hypocotyl was shorter than that of the wild type under white and shade conditions. We showed that the SHY2 expression level and its associated protein significantly accumulated under shade conditions. Furthermore, SHY2 transcript levels significantly increased in mutant pifQ, but decreased in PIF4OX compared to the wild type, which indicated that PIF4 is a transcriptional repressor of SHY2. ChIP assays have consistently shown that PIF4 directly binds to the promoters of SHY2. We further show that PIF4OX partially rescued the short hypocotyl characteristic of shy2-2 under white and shade conditions. Our results provide new insights into the regulatory mechanisms controlling SAS mediated elongation of the hypocotyl by PIF4-SHY2 modules in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Proteínas Nucleares/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas
15.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019674

RESUMO

The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation.


Assuntos
Arabidopsis/genética , Cotilédone/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Proteínas Serina-Treonina Quinases/genética , Plântula/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/enzimologia , Cotilédone/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/enzimologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Mutagênese Insercional , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Planta ; 252(4): 48, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32892254

RESUMO

MAIN CONCLUSION: The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomorphogenesis in Arabidopsis thaliana. ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2 promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid (BR)-inactivating cytochrome P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Assays using low light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 at the DNA-protein and protein-protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism. In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fitocromo A , Desenvolvimento Vegetal , Proteínas Repressoras , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Fitocromo A/metabolismo , Fitocromo B/genética , Desenvolvimento Vegetal/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Plântula/genética
17.
PeerJ ; 8: e9106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518720

RESUMO

Hypocotyl elongation is a critical sign of seed germination and seedling growth, and it is regulated by multi-environmental factors. Light, temperature, and water potential are the major environmental stimuli, and their regulatory mechanism on hypocotyl growth has been extensively studied at molecular level. However, the converged point in signaling process of light, temperature, and water potential on modulating hypocotyl elongation is still unclear. In the present study, we found cell wall was the co-target of the three environmental factors in regulating hypocotyl elongation by analyzing the extension kinetics of hypocotyl and the changes in hypocotyl cell wall of Brassica rapa under the combined effects of light intensity, temperature, and water potential. The three environmental factors regulated hypocotyl cell elongation both in isolation and in combination. Cell walls thickened, maintained, or thinned depending on growth conditions and developmental stages during hypocotyl elongation. Further analysis revealed that the imbalance in wall deposition and hypocotyl elongation led to dynamic changes in wall thickness. Low light repressed wall deposition by influencing the accumulation of cellulose, hemicellulose, and pectin; high temperature and high water potential had significant effects on pectin accumulation overall. It was concluded that wall deposition was tightly controlled during hypocotyl elongation, and low light, high temperature, and high water potential promoted hypocotyl elongation by repressing wall deposition, especially the deposition of pectin.

18.
EMBO J ; 39(13): e103630, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449547

RESUMO

Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Temperatura , Transativadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocótilo/genética , Transativadores/genética
19.
Int J Mol Sci ; 21(8)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290539

RESUMO

Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZD8055 upregulated senescence- and ethylene-related genes expression. Furthermore, ethylene insensitive mutants like etr1-1, ein2-5 and ein3 eil1, showed more hyposensitivity to AZD8055 than that of WT in hypocotyl growth inhibition. Similarly, blocking ethylene signals by ethylene action inhibitor Ag+ or biosynthesis inhibitor aminoethoxyvinylglycine (AVG) largely rescued hypocotyl growth even in presence of AZD8055. In addition, we also demonstrated that Type 2A phosphatase-associated protein of 46 kDa (TAP46), a downstream component of TOR signaling, physically interacts with 1-aminocy-clopropane-1-carboxylate (ACC) synthase ACS2 and ACS6. Arabidopsis overexpressing ACS2 or ACS6 showed more hypersensitivity to AZD8055 than WT in hypocotyl growth inhibition. Moreover, ACS2/ACS6 protein was accumulated under TOR suppression, implying TOR modulates ACC synthase protein levels. Taken together, our results indicate that TOR participates in negatively modulating ethylene signals and the molecular mechanism is likely involved in the regulation of ethylene biosynthesis by affecting ACSs in transcription and protein levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas/genética , Transdução de Sinais/fisiologia
20.
Plant Cell Physiol ; 61(6): 1191-1203, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333782

RESUMO

Growth of etiolated Arabidopsis hypocotyls is biphasic. During the first phase, cells elongate slowly and synchronously. At 48 h after imbibition, cells at the hypocotyl base accelerate their growth. Subsequently, this rapid elongation propagates through the hypocotyl from base to top. It is largely unclear what regulates the switch from slow to fast elongation. Reverse genetics-based screening for hypocotyl phenotypes identified three independent mutant lines of At1g70990, a short extensin (EXT) family protein that we named EXT33, with shorter etiolated hypocotyls during the slow elongation phase. However, at 72 h after imbibition, these dark-grown mutant hypocotyls start to elongate faster than the wild type (WT). As a result, fully mature 8-day-old dark-grown hypocotyls were significantly longer than WTs. Mutant roots showed no growth phenotype. In line with these results, analysis of native promoter-driven transcriptional fusion lines revealed that, in dark-grown hypocotyls, expression occurred in the epidermis and cortex and that it was strongest in the growing part. Confocal and spinning disk microscopy on C-terminal protein-GFP fusion lines localized the EXT33-protein to the ER and cell wall. Fourier-transform infrared microspectroscopy identified subtle changes in cell wall composition between WT and the mutant, reflecting altered cell wall biomechanics measured by constant load extensometry. Our results indicate that the EXT33 short EXT family protein is required during the first phase of dark-grown hypocotyl elongation and that it regulates the moment and extent of the growth acceleration by modulating cell wall extensibility.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Cotilédone/metabolismo , Estiolamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Hipocótilo/metabolismo , Proteínas de Membrana/genética , Filogenia , Raízes de Plantas/metabolismo , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA