Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 11(2): 488-504, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643826

RESUMO

Medulloblastoma (MB) is a common yet highly heterogeneous childhood malignant brain tumor, however, clinically effective molecular targeted therapy is lacking. Modulation of hedgehog (HH) signaling by epigenetically targeting the transcriptional factors GLI through bromodomain-containing protein 4 (BRD4) has recently spurred new interest as potential treatment of HH-driven MB. Through screening of current clinical BRD4 inhibitors for their inhibitory potency against glioma-associated oncogene homolog (GLI) protein, the BRD4 inhibitor 2 was selected as the lead for further structural optimization, which led to the identification of compounds 25 and 35 as the high potency HH inhibitors. Mechanism profiling showed that both compounds suppressed HH signaling by interacting with the transcriptional factor GLI, and were equally potent against the clinical resistant mutants and the wild type of smoothened (SMO) receptor with IC50 values around 1 nmol/L. In the resistant MB allograft mice, compound 25 was well tolerated and markedly suppressed tumor growth at both 5 mg/kg (TGI = 83.3%) and 10 mg/kg (TGI = 87.6%) doses. Although further modification is needed to improve the pharmacokinetic (PK) parameters, compound 25 represents an efficacious lead compound of GLI inhibitors, possessing optimal safety and tolerance to fight against HH-driven MB.

2.
Acta Pharm Sin B ; 10(8): 1453-1475, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963943

RESUMO

Angiokinases, such as vascular endothelial-, fibroblast- and platelet-derived growth factor receptors (VEGFRs, FGFRs and PDGFRs) play crucial roles in tumor angiogenesis. Anti-angiogenesis therapy using multi-angiokinase inhibitor has achieved great success in recent years. In this study, we presented the design, synthesis, target identification, molecular mechanism, pharmacodynamics (PD) and pharmacokinetics (PK) research of a novel triple-angiokinase inhibitor WXFL-152. WXFL-152, identified from a series of 4-oxyquinoline derivatives based on a structure-activity relationship study, inhibited the proliferation of vascular endothelial cells (ECs) and pericytes by blocking the angiokinase signals VEGF/VEGFR2, FGF/FGFRs and PDGF/PDGFRß simultaneously in vitro. Significant anticancer effects of WXFL-152 were confirmed in multiple preclinical tumor xenograft models, including a patient-derived tumor xenograft (PDX) model. Pharmacokinetic studies of WXFL-152 demonstrated high favourable bioavailability with single-dose and continuous multi-dose by oral administration in rats and beagles. In conclusion, WXFL-152, which is currently in phase Ib clinical trials, is a novel and effective triple-angiokinase inhibitor with clear PD and PK in tumor therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA