Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Curr Org Synth ; 21(8): 1102-1109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044698

RESUMO

BACKGROUND: Hydrazonoyl chloride, accessible from the respective 5-amino-8-fluoro- 4-oxoquinoline-3-carboxylate, undergoes a reaction with sec-cyclic amines to generate N1-(1- ethyl-8-fluoro-4-oxoquinolin-5-yl)amidrazone carboxylates. INTRODUCTION: A novel set of N1-(1-ethyl-8-fluoro-4-oxoquinolin-5-yl)amidrazone carboxylates (7a-h) incorporating N-piperazines or related congeners was synthesized via interaction of the hydrazonoyl chloride (6), accessible from the respective 5-amino-8-fluoro-4-oxoquinoline-3-carboxylate, with the appropriate sec-cyclic amine. These new compounds were characterized by 1HNMR, 13C-NMR, and HRMS spectral data and screened for their anticancer activities. AIMS: This study aimed at the synthesis of novel N1-( 4-oxoquinolin-5-yl)amidrazone carboxylate derivatives and investigated their potential as anticancer agents. OBJECTIVE: The reaction of hydrazonoyl chloride with the appropriate sec-cyclic amine was applied to synthesize a novel set of N1-(1-ethyl-8-fluoro-4-oxoquinolin-5- yl)amidrazone carboxylates that incorporate N piperazines. METHODS: A direct reaction of piperazines and related sec-cyclic amines with N-(4-oxoquinolin-5- yl)nitrile imine (1,3-dipole) was carried out for 8-10 h. RESULTS: The 1,3-dipole, generated in situ from its hydrazonoyl chloride precursor in the presence of trimethylamine, is suitable for the facile synthesis of N1-(1-ethyl-8-fluoro-4-oxoquinolin-5- yl)amidrazone carboxylates. CONCLUSION: This study led to the successful synthesis of novel N1-(8-fluoro-4-oxoquinolin-5- yl)amidrazones. All the examined compounds showed moderate activity with reasonable IC50 values in the micromolar range compared to Doxorubicin.


Assuntos
Antineoplásicos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Humanos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos
2.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893357

RESUMO

Quinone imines are important derivatives of quinones with a wide range of applications in organic synthesis and the pharmaceutical industry. The attack of nucleophilic reagents on quinone imines tends to lead to aromatization of the quinone skeleton, resulting in both the high reactivity and the unique reactivity of quinone imines. The extreme value of quinone imines in the construction of nitrogen- or oxygen-containing heterocycles has attracted widespread attention, and remarkable advances have been reported recently. This review provides an overview of the application of quinone imines in the synthesis of cyclic compounds via the domino annulation reaction.

3.
Chemistry ; 30(37): e202401034, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693605

RESUMO

Syntheses of (partially) aromatic nitrogen heterocycles increasingly rely on transition-metal catalyzed C-C- and C-N-cross-coupling reactions. Here we describe a different approach to the synthesis of indolines by a domino C(sp3)-H activation, 1,2-addition, and defluorinative SNAr-cyclization sequence to provide the target 1,2-diarylindolines (1,2-diaryl-2,3-dihydroindoles) from ortho-fluorinated methyl-arenes and N-aryl imines (benzylidene anilines) in a cyclocondensation that is mediated by potassium hexamethyldisilazide (KHMDS) as base exclusively. This transition-metal-free process via C-H and C-F bond activation provides a one-step entry into a wide array of indoline scaffolds (43 examples, up to 96 % yield). This privileged substructure is common in natural products and pharmaceuticals alike, and cannot be accessed by traditional condensation reactions.

4.
Angew Chem Int Ed Engl ; 63(30): e202405212, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721919

RESUMO

A carbonyl-assisted asymmetric 1,2-migratory allylation through in situ generation of vicinal tetrasubstituted stereocenters is reported to access enantiopure α-amino ketones and amino alcohols with excellent yields and diastereoselectivities. In a remarkable divergence, despite higher steric hindrance, the allylation exclusively occurs on ketones over imines in the first step, followed by a face-selective 1,2-allyl transfer, thus highlighting an exciting interplay between two distinct electrophiles. The methodology distinguishes itself through its adaptability to gram-scale synthesis, showcasing broad functional-group tolerance and stereodivergence. Density functional theory (DFT) analysis led to a deeper understanding of its selectivity and mechanistic framework. Highlighting its transformative potential, the method was applied to the total synthesis of hapalindole alkaloids.

5.
Chemistry ; 30(35): e202400730, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38634285

RESUMO

We present herein the synthesis, characterization and complexation of ferrocenyl-substituted MIIs (mesoionic imines) and their metal complexes. In the free MIIs, strong hydrogen bonding interactions are observed between the imine-N and the C-H bonds of the ferrocenyl substituents both in the solid state and in solution. The influence of this hydrogen bonding is so strong that complexation of the MIIs with [IrCp*Cl2]2 yields unique six-membered iridacycles via C-H-activation of the corresponding C-H-site at the Fc-substituent and not the Ph-substituent. This result is in contrast to previous reports in which always a preferential C-H activation at the phenyl substituent is observed in competitive reactions in the presence of ferrocenyl substituents. The corresponding Ir complexes formed after in-situ halide exchange reaction exist in either [Ir-I] contact or as [Ir]+I- solvent separated ion-pairs depending on the solvent polarity. The iodide coordinated and solvent separated ion-pairs display drastically different physical properties. The TEP (Tolman-electronic-parameter) of these ligands was determined and lines up with previously reported MII-ligands. The redox properties were investigated by a combination of electrochemical and spectroelectrochemical methods. We show here how non-covalent interactions can have a drastic influence on the physical and chemical properties of these new class of compounds.

6.
Chempluschem ; 89(8): e202400029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589286

RESUMO

Continuing our investigation of catalytic oxo/imido heterometathesis as novel water-free method for C=N bond construction, we report here the application of classical transition metal oxides dispersed on silica (MOx/SiO2, M=V, Mo, W) as cheap, robust and readily available alternative to the catalysts prepared via Surface Organometallic Chemistry (SOMC). The oxide materials demonstrated activity in heterometathetical imidation of ketones, WO3/SiO2 being the most efficient. We also describe a new well-defined supported W imido complex (≡SiO)W(=NMes)2(Me2Pyr) (Mes=2,4,6-Me3C6H2, Me2Pyr=2,5-dimethylpyrrolyl) and characterize it with SOMC protocols, which allowed us to identify the position of W on the oxo/imido heterometathesis activity scale (Mo

7.
Mini Rev Med Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38629363

RESUMO

One of the most important organic compounds, also known as a Schiff base, imine, or azomethine, has been associated with several biological processes. The group is a component of both natural or synthetic chemicals and functions as both a precursor and an intermediary in the synthesis of therapeutically active substances. The review highlights the various non-metal Schiff bases' structure-activity relationship (SAR) studies, general model, docking, and design approach for anticonvulsant actions. Schiff bases serve as linkers in numerous synthetic compounds with a variety of activities, according to the findings of several investigations. As a result, the current review will give readers a thorough understanding of the key ideas put forth by different researchers regarding the anticonvulsant properties of Schiff bases. It will serve as a valuable information source for those planning to synthesize new anticonvulsant molecules that contain Schiff bases as pharmacophores or biologically active moieties.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38684661

RESUMO

The selective oxidation of amines to imines under mild conditions has attracted much attention. Our study reveals that copper phenylacetylide (PhC2Cu) could serve as an efficient photocatalyst for imine synthesis under visible-light irradiation (>400 nm). Utilizing benzylamine as a model reactant, PhC2Cu achieves an imine yield of 50.4%, which is 5 times higher than that of P25 under the same conditions and comparable to the yield obtained by the 3 wt % Au/P25 photocatalyst (55.4%). Further loading 3.9 nm TiO2 onto PhC2Cu through tetrabutyl titanate hydrolysis increases the imine yield to 84.7%, with a Ti:Cu atomic ratio of 3.65%. Control experiments, photoluminescence (PL) spectra, optical pump terahertz probe (OPTP) spectra, and electron spin resonance (ESR) tests confirm that the optimized TiO2 modification promotes the separation of excited carriers and electron transfer in PhC2Cu and facilitates the activation of surface oxygen, thereby enhancing the formation of superoxide radicals, a key active oxygen species in the reaction system. This work presents a promising strategy for efficient imine synthesis via amine coupling and expands the application field of PhC2Cu-based photocatalysts.

9.
Mar Drugs ; 22(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535463

RESUMO

This study reports the first detection of the marine neurotoxin pinnatoxin-G (PnTX-G) in clams collected in the northwestern Adriatic Sea (Italy). It also represents the first report of the potential toxin-producing dinoflagellate, Vulcanodinium rugosum, in Italian seas. This result, from the coasts of the Emilia-Romagna Region, indicates a successful colonization process, reflecting conditions in France where V. rugosum was initially documented. In this case, the concentration of PnTXs was very low, making further sampling necessary to fully understand the extent of the phenomenon. Discussions on the need to obtain more data to support a proper risk assessment and the need to implement a monitoring program that includes emerging marine biotoxins are also included.


Assuntos
Alcaloides , Dinoflagellida , Compostos de Espiro , Humanos , França , Itália
10.
Harmful Algae ; 133: 102608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485442

RESUMO

The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°â€’43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.


Assuntos
Dinoflagellida , Compostos Heterocíclicos com 3 Anéis , Hidrocarbonetos Cíclicos , Iminas , Microalgas , Humanos , Espectrometria de Massas em Tandem , Chile , Toxinas Marinhas/análise , Frutos do Mar/análise , Alimentos Marinhos/análise
11.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396940

RESUMO

Organometallic drug development is still in its early stage, but recent studies show that organometallics having iron as the central atom have the possibility of becoming good drug candidates because iron is an important micro-nutrient, and it is compatible with many biological systems, including the human body. Being an eco-friendly Lewis acid, iron can accept the lone pair of electrons from imino(sp2)-nitrogen, and the resultant iron-imine complexes with iron as a central atom have the possibility of interacting with several proteins and enzymes in humans. Iron-imine complexes have demonstrated significant potential with anticancer, bactericidal, fungicidal, and other medicinal activities in recent years. This article systematically discusses major synthetic methods and pharmacological potentials of iron-imine complexes having in vitro activity to significant clinical performance from 2016 to date. In a nutshell, this manuscript offers a simplistic view of iron complexes in medicinal inorganic chemistry: for instance, iron is presented as an "eco-friendly non-toxic" metal (as opposed to platinum) that will lead to non-toxic pharmaceuticals. The abundant literature on iron chelators shows that many iron complexes, particularly if redox-active in cells, can be quite cytotoxic, which can be beneficial for future targeted therapies. While we made every effort to include all the related papers, any omission is purely unintentional.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Iminas , Ferro , Quelantes de Ferro , Oxirredução , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Complexos de Coordenação/farmacologia , Ligantes
12.
Antibiotics (Basel) ; 13(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247634

RESUMO

Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.

13.
Angew Chem Int Ed Engl ; 63(1): e202313247, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37909921

RESUMO

A new strategy to access α-functionalized alicyclic amines via their corresponding imine-BF3 complexes is reported. Isolable imine-BF3 complexes, readily prepared via dehydrohalogenation of N-bromoamines in a base-promoted/18-crown-6 catalyzed process followed by addition of boron trifluoride etherate, undergo reactions with a wide range of organometallic nucleophiles to afford α-functionalized azacycles. Organozinc and organomagnesium nucleophiles add at ambient temperatures, obviating the need for cryogenic conditions. In situ preparation of imine-BF3 complexes provides access to α-functionalized morpholines and piperazines directly from their parent amines in a single operation. α-Functionalized morpholines can be elaborated further, for instance by installing a second substituent in the α'-position.

14.
Chem Asian J ; 19(2): e202300904, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38018300

RESUMO

An in situ generated photoactive copper(I)-complex-catalyzed aziridination reaction of cyclic N-sulfonyl imines with α-aryl-substituted vinyl azides irradiated by blue-LEDs light is reported for the first time. This novel SET process represents a mild, sustainable, and pragmatic method for accessing synthetically resourceful sulfamidate-fused aziridines in acceptable chemical yields with excellent diastereoselectivities. Delightedly, pharmacologically attractive benzo[f][1,2,3]oxathiazepine dioxides and fused isoxazoline frameworks were achieved through our newly developed metal-free based ring-expansion techniques, highlighting the synthetic value of accessed aziridines. Finally, the possible mechanism for [2+1] aza-cyclization was presented based on the conduction of a series of control experiments.

15.
Angew Chem Int Ed Engl ; 63(5): e202312663, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38032817

RESUMO

Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.


Assuntos
Compostos Azo , Iminas , Tiossemicarbazonas , Estereoisomerismo , Compostos Azo/farmacologia , Catálise
16.
Future Med Chem ; 16(1): 59-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047370

RESUMO

Aim: 2-Thioxothiazolidin-4-one represents a versatile scaffold in drug development. The authors used it to prepare new potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors that can be utilized, e.g., to treat Alzheimer's disease. Materials & methods: 3-Amino-2-thioxothiazolidin-4-one was modified at the amino group or active methylene, using substituted benzaldehydes. The derivatives were evaluated for inhibition of AChE and BChE (Ellman's method). Results & conclusion: The derivatives were obtained with yields of 52-94%. They showed dual inhibition with IC50 values from 13.15 µM; many compounds were superior to rivastigmine. The structure-activity relationship favors nitrobenzylidene and 3,5-dihalogenosalicylidene scaffolds. AChE was inhibited noncompetitively, whereas BChE was inhibited with a mixed type of inhibition. Molecular docking provided insights into molecular interactions. Each enzyme is inhibited by a different binding mode.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
17.
J Biomol Struct Dyn ; 42(4): 2013-2033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37166274

RESUMO

The advent of influenza A (H1N1) drug-resistant strains led to the search quest for more potent inhibitors of the influenza A virus, especially in this devastating COVID-19 pandemic era. Hence, the present research utilized some molecular modelling strategies to unveil new camphor imine-based compounds as anti-influenza A (H1N1) pdm09 agents. The 2D-QSAR results revealed GFA-MLR (R2train = 0.9158, Q2=0.8475) and GFA-ANN (R2train = 0.9264, Q2=0.9238) models for the anti-influenza A (H1N1) pdm09 activity prediction which have passed the QSAR model acceptability thresholds. The results from the 3D-QSAR studies also revealed CoMFA (R2train =0.977, Q2=0.509) and CoMSIA_S (R2train =0.976, Q2=0.527) models for activity predictions. Based on the notable information derived from the 2D-QSAR, 3D-QSAR, and docking analysis, ten (10) new camphor imine-based compounds (22a-22j) were designed using the most active compound 22 as the template. Furthermore, the high predicted activity and binding scores of compound 22j were further justified by the high reactive sites shown in the electrostatic potential maps and other quantum chemical calculations. The MD simulation of 22j in the active site of the influenza hemagglutinin (HA) receptor confirmed the dynamic stability of the complex. Moreover, the appraisals of drug-likeness and ADMET properties of the proposed compounds showed zero violation of Lipinski's criteria with good pharmacokinetic profiles. Hence, the outcomes in this work recommend further in-depth in vivo and in-vitro investigations to validate these theoretical findings.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Cânfora/farmacologia , Cânfora/química , Iminas/farmacologia , Iminas/química , Pandemias , Relação Quantitativa Estrutura-Atividade , Anticorpos , Simulação de Acoplamento Molecular
18.
Eco Environ Health ; 2(1): 32-39, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38074450

RESUMO

Personal care products (PCPs) inevitably come into contact with the skin in people's daily life, potentially causing adverse effects on human health. The adverse effects can be exacerbated under UV irradiation but are rarely studied. In this study, to clearly understand the damage of representative PCPs to human skin and their photochemical transformation behaviors, fragrance tonalide (AHTN) was measured in the presence of amino acids as a basic building block of human tissue. The results showed that amino acids could decelerate the photochemical transformation rate of AHTN, increasing the likelihood of AHNT persisting on the skin surface and the health risk to the human being. Further, the interaction between amino acids and AHTN was investigated. AHTN could play bidirectional roles in damaging amino acids: the photosensitizer and reactive activator. As a photosensitizer, the 1O2 generated from the AHTN photosensitization was partly employed to oxidative damage amino acids. Furthermore, by combining experiments with quantum chemical computation, the carbonyl group of the activator AHTN was found to be the active site to activate the N-containing group of amino acids. The activation mechanism was the electron transfer between AHTN and amino acids. Imines formed during the photochemical transformation of AHTN with histidine/glycine were the molecular initiating event for potential skin sensitization. This study reported for the first time that skin photosensitizer formation threatens human health during the photochemical transformation of AHTN.

19.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959767

RESUMO

The in situ-generated N-aryl nitrile imines derived from trifluoroacetonitrile smoothly undergo (3+2)-cycloadditions onto the enone fragment of the levoglucosenone molecule, yielding the corresponding, five-membered cycloadducts. In contrast to the 'classic' C(Ph),N(Ph) nitrile imine, reactions with fluorinated C(CF3),N(Ar) analogues lead to stable pyrazolines in a chemo- and stereoselective manner. Based on the result of X-ray single crystal diffraction analysis, their structures were established as exo-cycloadducts with the location of the N-Ar terminus of the 1,3-dipole at the α-position of the enone moiety. The DFT computation demonstrated that the observed reaction pathway results from the strong dominance of kinetic control over thermodynamic control.

20.
Molecules ; 28(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894569

RESUMO

The reduction in esters, nitriles, and imines requires harsh conditions (highly reactive reagents, high temperatures, and pressures) or complex metal-ligand catalytic systems. Catalysts comprising earth-abundant and less toxic elements are desirable from the perspective of green chemistry. In this study, we developed a green hydroboration protocol for the reduction in esters, nitriles, and imines at room temperature (25 °C) using pinacolborane as the reducing agent and a commercially available Grignard reagent as the catalyst. Screening of various alkyl magnesium halides revealed MeMgCl as the optimal catalyst for the reduction. The hydroboration and subsequent hydrolysis of various esters yielded corresponding alcohols over a short reaction time (~0.5 h). The hydroboration of nitriles and imines produced various primary and secondary amines in excellent yields. Chemoselective reduction and density functional theory calculations are also performed. The proposed green hydroboration protocol eliminates the requirements for complex ligand systems and elevated temperatures, providing an effective method for the reduction in esters, nitriles, and imines at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA