Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831416

RESUMO

Class switch recombination (CSR) is the process by which B cells switch production from IgM/IgD to other immunoglobulin isotypes, enabling them to mount an effective immune response against pathogens. Timely resolution of CSR prevents damage due to an uncontrolled and prolonged immune response. While many positive regulators of CSR have been described, negative regulators of CSR are relatively unknown. Using an shRNA library screen targeting more than 28,000 genes in a mouse B cell line, we have identified a novel, uncharacterized protein of 82kD (KIAA1841, NM_027860), which we have named SANBR (SANT and BTB domain regulator of CSR), as a negative regulator of CSR. The purified, recombinant BTB domain of SANBR exhibited characteristic properties such as homodimerization and interaction with corepressor proteins, including HDAC and SMRT. Overexpression of SANBR inhibited CSR in primary mouse splenic B cells, and inhibition of CSR is dependent on the BTB domain while the SANT domain is largely dispensable. Thus, we have identified a new member of the BTB family that serves as a negative regulator of CSR. Future investigations to identify transcriptional targets of SANBR in B cells will reveal further insights into the specific mechanisms by which SANBR regulates CSR as well as fundamental gene regulatory activities of this protein.


Assuntos
Domínio BTB-POZ , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina , Linfoma de Células B/patologia , Recombinação Genética , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Linfoma de Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Homologia de Sequência
2.
Front Immunol ; 12: 762032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003074

RESUMO

Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG. During immunoglobulin gene diversification in activated B cells, targeted cytosine deamination by activation-induced cytidine deaminase followed by uracil excision by hUNG is important for class switch recombination (CSR) and somatic hypermutation by providing the substrate for DNA double-strand breaks and mutagenesis, respectively. However, considerable uncertainty remains regarding the mechanisms leading to DNA incision following uracil excision: based on the general BER scheme, apurinic/apyrimidinic (AP) endonuclease (APE1 and/or APE2) is believed to generate the strand break by incising the AP site generated by hUNG. We report here that hUNG may incise the DNA backbone subsequent to uracil excision resulting in a 3´-α,ß-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5´-phosphate. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2´ occurs via the formation of a C1´ enolate intermediate. UIP is removed from the 3´-end by hAPE1. This shows that the first two steps in uracil BER can be performed by hUNG, which might explain the significant residual CSR activity in cells deficient in APE1 and APE2.


Assuntos
DNA/metabolismo , Genes de Imunoglobulinas , Uracila-DNA Glicosidase/metabolismo , Uracila/metabolismo , Humanos
3.
Front Immunol ; 11: 585133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101316

RESUMO

Repeated homologous antigen immunization has been hypothesized to hinder antibody diversification, whereas sequential immunization with heterologous immunogens can educate B cell differentiations towards conserved residues thereby facilitating the generation of cross-reactive immunity. In this study, we developed a sequential vaccination strategy that utilized epitope-decreasing antigens to reinforce the cross-reactivity of T and B cell immune responses against all four serotypes dengue virus. The epitope-decreasing immunization was implemented by sequentially inoculating mice with antigens of decreasing domain complexity that first immunized with DENV1 live-attenuated virus, following by the Envelope protein (Env), and then Env domain III (EDIII) subunit protein. When compared to mice immunized with DENV1 live-attenuated virus three times, epitope-decreasing immunization induced higher TNF-α CD8+ T cell immune response against consensus epitopes. Epitope-decreasing immunization also significantly improved neutralizing antibody response to heterologous serotypes. Moreover, this sequential approach promoted somatic hypermutations in the immunoglobulin gene of antigen-specific memory B cells in comparison to repeated immunization. This proof-of-concept work on epitope-decreasing sequential vaccination sheds light on how successively exposing the immune system to decreasing-epitope antigens can better induce cross-reactive antibodies.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/imunologia , Vacinação/métodos , Animais , Dengue/prevenção & controle , Vírus da Dengue/imunologia , Epitopos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Immunol Cell Biol ; 96(9): 948-957, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665088

RESUMO

Activation-induced cytidine deaminase (AID) is required for the immunoglobulin diversification processes of somatic hypermutation, gene conversion and class-switch recombination. The targeting of AID's deamination activity is thought to be a combination of cis- and trans-acting elements, but has not been fully elucidated. Deletion analysis of putative proximal cis-regulatory motifs, while helpful, fails to identify additive versus cumulative effects, redundancy, and may create new motifs where none previously existed. In contrast, gain-of-function analysis can be more insightful with fewer of the same drawbacks and the output is a positive result. Here, we show five defined DNA regions of the avian Igλ locus that are sufficient to confer events of hypermutation to a target gene. In our analysis, the essential cis-targeting elements fully reconstituted diversification of a transgene under heterologous promotion in the avian B-cell line DT40. Furthermore, to the best of our knowledge two of the five regions we report on here have not previously been described as individually having an influence on somatic hypermutation.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/genética , Mutação com Ganho de Função , Switching de Imunoglobulina , Animais , Linhagem Celular , Galinhas , Conversão Gênica , Hipermutação Somática de Imunoglobulina
5.
EMBO J ; 35(13): 1452-64, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220848

RESUMO

Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate.


Assuntos
DNA de Cadeia Simples/metabolismo , Histonas/metabolismo , Região Variável de Imunoglobulina/metabolismo , Animais , Linhagem Celular , Galinhas , Citidina Desaminase/metabolismo
6.
Cell Cycle ; 13(23): 3659-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483076

RESUMO

Maintenance of genome integrity relies on multiple DNA repair pathways as well as on checkpoint regulation. Activation of the checkpoint kinases Chk1 and Chk2 by DNA damage triggers cell cycle arrest and improved DNA repair, or apoptosis in case of excessive damage. Chk1 and Chk2 have been reported to act in a complementary or redundant fashion, depending on the physiological context. During secondary immunoglobulin (Ig) diversification in B lymphocytes, DNA damage is abundantly introduced by activation-induced cytidine deaminase (AID) and processed to mutations in a locus-specific manner by several error-prone DNA repair pathways. We have previously shown that Chk1 negatively regulates Ig somatic hypermutation by promoting error-free homologous recombination and Ig gene conversion. We now report that Chk2 shows opposite effects to Chk1 in the regulation of these processes. Chk2 inactivation in B cells leads to decreased Ig hypermutation and Ig class switching, and increased Ig gene conversion activity. This is linked to defects in non-homologous end joining and increased Chk1 activation upon interference with Chk2 function. Intriguingly, in the context of physiological introduction of substantial DNA damage into the genome during Ig diversification, the 2 checkpoint kinases thus function in an opposing manner, rather than redundantly or cooperatively.


Assuntos
Quinase do Ponto de Checagem 2/deficiência , Imunoglobulinas/fisiologia , Proteínas Quinases/deficiência , Linfócitos B/enzimologia , Sobrevivência Celular/fisiologia , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2/genética , Técnicas de Inativação de Genes/métodos , Humanos , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA