Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Appl Crystallogr ; 57(Pt 5): 1557-1565, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39387086

RESUMO

Here, a morphologically based approach is used for the in situ characterization of 3D growth rates of facetted crystals from the solution phase. Crystal images of single crystals of the ß-form of l-glutamic acid are captured in situ during their growth at a relative supersaturation of 1.05 using transmission optical microscopy. The crystal growth rates estimated for both the {101} capping and {021} prismatic faces through image processing are consistent with those determined using reflection light mode [Jiang, Ma, Hazlehurst, Ilett, Jackson, Hogg & Roberts (2024 ▸). Cryst. Growth Des. 24, 3277-3288]. The growth rate in the {010} face is, for the first time, estimated from the shadow widths of the {021} prismatic faces and found to be typically about half that of the {021} prismatic faces. Analysis of the 3D shape during growth reveals that the initial needle-like crystal morphology develops during the growth process to become more tabular, associated with the Zingg factor evolving from 2.9 to 1.7 (>1). The change in relative solution supersaturation during the growth process is estimated from calculations of the crystal volume, offering an alternative approach to determine this dynamically from visual observations.

2.
J Appl Crystallogr ; 57(Pt 5): 1299-1310, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39387089

RESUMO

Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39404151

RESUMO

The Z-scheme heterojunction has been demonstrated to be effective in tuning the photocatalytic performance of photocatalysts. However, there is still a lack of quantitative and in-depth research on how the Z-scheme heterojunction affects the concentration of surface-reaching photoexcited charges. Here, by combining time-resolved spectroscopies and kinetic analysis, the concentration of surface-reaching photoholes (Ch+(surf)) within g-C3N4/TiO2 Z-scheme heterojunctions was quantitatively analyzed for the first time. Quantitative measurements reveal that Ch+(surf) of the prepared Z-scheme photocatalysts is highly dependent on the g-C3N4 content and the induced Z-scheme heterojunctions at the g-C3N4/TiO2 interface. Encouragingly, we found that a properly engineered Z-scheme heterojunction with close coupling of g-C3N4 and TiO2 can significantly increase the Ch+(surf), leading to nearly a 1.7-fold increase compared with pristine TiO2 samples. Furthermore, a distinct hole trap state-mediated Z-scheme charge transfer mechanism was uncovered in which the intrinsic interface defects at the g-C3N4/TiO2 junction act as hole traps, accelerating interface electron-hole recombination, thereby boosting spatial charge separation and ultimately enriching the Ch+(surf). This work provides insights into understanding and controlling electron pathways and Ch+(surf) in Z-scheme photocatalysis, with implications for the screening of different types of direct Z-scheme photocatalysts.

4.
Small ; : e2406862, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308284

RESUMO

Interfacial stability is one of the critical challenges in all-solid-state Li metal batteries. Multiple processes such as solid electrolyte (SE) decomposition and lithium dendrite growth take place at the solid interfaces during cycling, leading to the overall cell failure. To deconvolute these complex processes, in situ characterization is of paramount importance to elucidate the interfacial evolution on the SE upon Li plating/stripping. Herein, an all-solid-state asymmetric in situ cell is developed that allows the direct visualization of the highly localized Li plating/stripping processes under the optical microscope. Moreover, this cell configuration enables reliable post-mortem chemical and morphological analysis of the intact SE/Li interface. Using combined scanning electron microscopy and energy-dispersive X-ray spectroscopy, the study reveals that the evolution of the Li argyrodite interface is strongly influenced by the current density, particularly in terms of chemical distribution and Li plating morphology. More specifically, the solid interface is LiCl-rich with the formation of Li cubes at low current densities, while high currents result in more uniform elemental distribution and filament morphology. These findings elucidate the dynamic evolution mechanism at solid interfaces and offer valuable guidance for developing stable solid interfaces in all-solid-state Li metal batteries.

5.
Macromol Rapid Commun ; : e2400627, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311512

RESUMO

Förster resonance energy transfer (FRET) is an established tool for measuring distances between two molecules (donor and acceptor) on the nanometer scale. In the field of polymer science, the use of FRET to measure polymer end-to-end distances (Ree) often requires complex synthetic steps to label the chain ends with the FRET pair. This work reports an anthracene-functionalized chain-transfer agent for reversible addition-fragmentation chain-transfer (RAFT) polymerization, enabling the synthesized chains to be directly end-labeled with a donor and acceptor without the need for any post-polymerization functionalization. Noteworthily, this FRET method allows for chain conformation measurements of low molecular weight oligomers in situ, without any work-up steps. Using FRET to directly measure the average Ree of the oligomer chains during polymerization, the chain growth of methyl methacrylate, styrene, and methyl acrylate is investigated as a function of reaction time, including determining their degree of polymerization (DP). It is found that DP results from FRET are consistent with other established measurement methods, such as nuclear magnetic resonance (NMR) spectroscopy. Altogether, this work presents a broadly applicable and straightforward method to in situ characterize Ree of low molecular weight oligomers and their DP during reaction.

6.
Adv Mater ; 36(39): e2404393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128130

RESUMO

Intensifying the synergy between confined carbon nanopores and ionic liquids (ILs) and a deep comprehension of the ion behavior is required for enhancing the capacitive storage performance. Despite many theoretical insights on the storage mechanism, experimental verification has remained lacking due to the intricate nature of pore texture. Here, a compressed micropore-rich carbon framework (CMCF) with tailored monolayer and bilayer confinement pores is synthesized, which exhibits a compatible ionophilic interface to accommodate the IL [EMIM][BF4]. By deploying in situ Raman spectroscopy, in situ Fourier-transform infrared spectroscopy, and solid-state nuclear magnetic resonance, the effect of the pore textures on ions storage behaviors is elucidated. A voltage-induced ion gradient filling process in these ionophilic pores is proposed, in which ion exchange and co-ion desorption dominate the charge storage process. Moreover, it is established that the monolayer confinement of ions enhances the capacity, and bilayer confinement facilitates the charging dynamics. This work may guide the design of nanoconfinement carbon for high-energy-density supercapacitors and deepen the understanding of the charge storage mechanism in ionophilic pores.

7.
Angew Chem Int Ed Engl ; : e202412214, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141606

RESUMO

Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.

8.
IUCrJ ; 11(Pt 5): 675-694, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088001

RESUMO

Owing to their exceptional properties, hard materials such as advanced ceramics, metals and composites have enormous economic and societal value, with applications across numerous industries. Understanding their microstructural characteristics is crucial for enhancing their performance, materials development and unleashing their potential for future innovative applications. However, their microstructures are unambiguously hierarchical and typically span several length scales, from sub-ångstrom to micrometres, posing demanding challenges for their characterization, especially for in situ characterization which is critical to understanding the kinetic processes controlling microstructure formation. This review provides a comprehensive description of the rapidly developing technique of ultra-small angle X-ray scattering (USAXS), a nondestructive method for probing the nano-to-micrometre scale features of hard materials. USAXS and its complementary techniques, when developed for and applied to hard materials, offer valuable insights into their porosity, grain size, phase composition and inhomogeneities. We discuss the fundamental principles, instrumentation, advantages, challenges and global status of USAXS for hard materials. Using selected examples, we demonstrate the potential of this technique for unveiling the microstructural characteristics of hard materials and its relevance to advanced materials development and manufacturing process optimization. We also provide our perspective on the opportunities and challenges for the continued development of USAXS, including multimodal characterization, coherent scattering, time-resolved studies, machine learning and autonomous experiments. Our goal is to stimulate further implementation and exploration of USAXS techniques and inspire their broader adoption across various domains of hard materials science, thereby driving the field toward discoveries and further developments.

9.
ACS Nano ; 18(32): 20934-20956, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39092833

RESUMO

The electrochemical reduction of nitrogen to produce ammonia is pivotal in modern society due to its environmental friendliness and the substantial influence that ammonia has on food, chemicals, and energy. However, the current electrochemical nitrogen reduction reaction (NRR) mechanism is still imperfect, which seriously impedes the development of NRR. In situ characterization techniques offer insight into the alterations taking place at the electrode/electrolyte interface throughout the NRR process, thereby helping us to explore the NRR mechanism in-depth and ultimately promote the development of efficient catalytic systems for NRR. Herein, we introduce the popular theories and mechanisms of the electrochemical NRR and provide an extensive overview on the application of various in situ characterization approaches for on-site detection of reaction intermediates and catalyst transformations during electrocatalytic NRR processes, including different optical techniques, X-ray-based techniques, electron microscopy, and scanning probe microscopy. Finally, some major challenges and future directions of these in situ techniques are proposed.

10.
Environ Sci Technol ; 58(32): 14078-14087, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093060

RESUMO

In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.


Assuntos
Minerais , Minerais/química , Recuperação e Remediação Ambiental , Biodegradação Ambiental
11.
Small ; 20(36): e2401674, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39077956

RESUMO

Electrochemical growth of metal nanocrystals is pivotal for material synthesis, processing, and resource recovery. Understanding the heterogeneous interface between electrolyte and electrode is crucial for nanocrystal nucleation, but the influence of this interaction is still poorly understood. This study employs advanced in situ measurements to investigate the heterogeneous nucleation of metals on solid surfaces. By observing the copper nanocrystal electrodeposition, an interphase interaction-induced nucleation mechanism highly dependent on substrate surface energy is uncovered. It shows that a high-energy (HE) electrode tended to form a polycrystalline structure, while a low-energy (LE) electrode induced a monocrystalline structure. Raman and electrochemical characterizations confirmed that HE interface enhances the interphase interaction, reducing the nucleation barrier for the sturdy nanostructures. This leads to a 30.92-52.21% reduction in the crystal layer thickness and a 19.18-31.78% increase in the charge transfer capability, promoting the formation of a uniform and compact film. The structural compactness of the early nucleated crystals enhances the deposit stability for long-duration electrodeposition. This research not only inspires comprehension of physicochemical processes correlated with heterogeneous nucleation, but also paves a new avenue for high-quality synthesis and efficient recovery of metallic nanomaterials.

12.
Small ; : e2405008, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075971

RESUMO

In light of the intensifying global energy crisis and the mounting demand for environmental protection, it is of vital importance to develop advanced hydrogen energy conversion systems. Electrolysis cells for hydrogen production and fuel cell devices for hydrogen utilization are indispensable in hydrogen energy conversion. As one of the electrolysis cells, water splitting involves two electrochemical reactions, hydrogen evolution reaction and oxygen evolution reaction. And oxygen reduction reaction coupled with hydrogen oxidation reaction, represent the core electrocatalytic reactions in fuel cell devices. However, the inherent complexity and the lack of a clear understanding of the structure-performance relationship of these electrocatalytic reactions, have posed significant challenges to the advancement of research in this field. In this work, the recent development in revealing the mechanism of electrocatalytic reactions in hydrogen energy conversion systems is reviewed, including in situ characterization and theoretical calculation. First, the working principles and applications of operando measurements in unveiling the reaction mechanism are systematically introduced. Then the application of theoretical calculations in the design of catalysts and the investigation of the reaction mechanism are discussed. Furthermore, the challenges and opportunities are also summarized and discussed for paving the development of hydrogen energy conversion systems.

13.
Adv Mater ; 36(35): e2404046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38842820

RESUMO

Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.

14.
Adv Sci (Weinh) ; 11(32): e2403391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925593

RESUMO

The development of lithium-sulfur (Li─S) batteries has been hampered by the shuttling effect of lithium polysulfides (LiPSs). An effective method to address this issue is to use an electrocatalyst to accelerate the catalytic conversion of LiPSs. In this study, heterogeneous MnP-MnO2 nanoparticles are uniformly synthesized and embedded in porous carbon (MnP-MnO2/C) as core catalysts to improve the reaction kinetics of LiPSs. In situ characterization and density functional theory (DFT) calculations confirm that the MnP-MnO2 heterostructure undergo surface sulfidation during the charge/discharge process, forming the MnS2 phase. Surface sulfidation of the MnP-MnO2 heterostructure catalyst significantly accelerated the SRR and Li2S activation, effectively inhibiting the LiPSs shuttling effect. Consequently, the MnP-MnO2/C@S cathode achieves outstanding rate performance (10 C, 500 mAh g-1) and ultrahigh cycling stability (0.017% decay rate per cycle for 2000 cycles at 5 C). A pouch cell with MnP-MnO2/C@S cathode delivers a high energy density of 429 Wh kg-1. This study may provide a new approach to investigating the surface sulfidation of electrocatalysts, which is valuable for advancing high-energy-density Li-S batteries.

15.
Chempluschem ; : e202300511, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853143

RESUMO

The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. Along with analysing the reaction pathways, it is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques under actual reaction conditions. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.

16.
ChemSusChem ; : e202400869, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924363

RESUMO

The electrochemical reduction reaction (HMFRR) of 5-hydroxymethylfurfural (HMF) has emerged as a promising avenue for the utilization and refinement of the biomass-derived platform molecule HMF into high-value chemicals, addressing energy sustainability challenges. Transition metal electrocatalysts (TMCs) have recently garnered attention as promising candidates for catalyzing HMFRR, capitalizing on the presence of vacant d orbitals and unpaired d electrons. TMCs play a pivotal role in facilitating the generation of intermediates through interactions with HMF, thereby lowering the activation energy of intricate reactions and significantly augmenting the catalytic reaction rate. In the absence of comprehensive and guiding reviews in this domain, this paper aims to comprehensively summarize the key advancements in the design of transition metal catalysts for HMFRR. It elucidates the mechanisms and pH dependency of various products generated during the electrochemical reduction of HMF, with a specific emphasis on the bond-cleavage angle. Additionally, it offers a detailed introduction to typical in-situ characterization techniques. Finally, the review explores engineering strategies and principles to enhance HMFRR activity using TMCs, particularly focusing on multiphase interface control, crystal face control, and defect engineering control. This review introduces novel concepts to guide the design of HMFRR electrocatalysts, especially TMCs, thus promoting advancements in biomass conversion.

17.
Proc Natl Acad Sci U S A ; 121(25): e2322107121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857396

RESUMO

The photocatalytic CO2-to-CH4 conversion involves multiple consecutive proton-electron coupling transfer processes. Achieving high CH4 selectivity with satisfactory conversion efficiency remains challenging since the inefficient proton and electron delivery path results in sluggish proton-electron transfer kinetics. Herein, we propose the fabrication of atomically adjacent anion-cation vacancy as paired redox active sites that could maximally promote the proton- and electron-donating efficiency to simultaneously enhance the oxidation and reduction half-reactions, achieving higher photocatalytic CO2 reduction activity and CH4 selectivity. Taking TiO2 as a photocatalyst prototype, the operando electron paramagnetic resonance spectra, quasi in situ X-ray photoelectron spectroscopy measurements, and high-angle annular dark-field-scanning transmission electron microscopy image analysis prove that the VTi on TiO2 as initial sites can induce electron redistribution and facilitate the escape of the adjacent oxygen atom, thereby triggering the dynamic creation of atomically adjacent dual-vacancy sites during photocatalytic reactions. The dual-vacancy sites not only promote the proton- and electron-donating efficiency for CO2 activation and protonation but also modulate the coordination modes of surface-bound intermediate species, thus converting the endoergic protonation step to an exoergic reaction process and steering the CO2 reduction pathway toward CH4 production. As a result, these in situ created dual active sites enable nearly 100% CH4 selectivity and evolution rate of 19.4 µmol g-1 h-1, about 80 times higher than that of pristine TiO2. Thus, these insights into vacancy dynamics and structure-function relationship are valuable to atomic understanding and catalyst design for achieving highly selective catalysis.

18.
ACS Appl Mater Interfaces ; 16(27): 35723-35731, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935890

RESUMO

At present, the power conversion efficiency of single-junction perovskite-based solar cells reaches over 26%. The further efficiency increase of perovskite-based optoelectronic devices is limited mainly by defects, causing the nonradiative recombination of charge carriers. To improve efficiency and ensure reproducible fabrication of high-quality layers, it is crucial to understand the perovskite nucleation and growth mechanism along with associated process control to reduce the defect density. In this study, we investigate the growth kinetics of a promising narrow bandgap perovskite, formamidinium methylammonium lead iodide (FAMAPbI3), for high-performance single-junction solar cells. The temporal evolution of structural and optoelectronic properties during FAMAPbI3 vacuum codeposition was inspected in real time by grazing-incidence wide-angle X-ray scattering and photoluminescence. Such a combination of analytical techniques unravels the evolution of intrinsic defect density and layer morphology correlated with lattice strain from the early stages of the perovskite deposition.

19.
Adv Sci (Weinh) ; 11(24): e2307397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650173

RESUMO

Li-rich Mn-based layered oxides (LLO) hold great promise as cathode materials for lithium-ion batteries (LIBs) due to their unique oxygen redox (OR) chemistry, which enables additional capacity. However, the LLOs face challenges related to the instability of their OR process due to the weak transition metal (TM)-oxygen bond, leading to oxygen loss and irreversible phase transition that results in severe capacity and voltage decay. Herein, a synergistic electronic regulation strategy of surface and interior structures to enhance oxygen stability is proposed. In the interior of the materials, the local electrons around TM and O atoms may be delocalized by surrounding Mo atoms, facilitating the formation of stronger TM─O bonds at high voltages. Besides, on the surface, the highly reactive O atoms with lone pairs of electrons are passivated by additional TM atoms, which provides a more stable TM─O framework. Hence, this strategy stabilizes the oxygen and hinders TM migration, which enhances the reversibility in structural evolution, leading to increased capacity and voltage retention. This work presents an efficient approach to enhance the performance of LLOs through surface-to-interior electronic structure modulation, while also contributing to a deeper understanding of their redox reaction.

20.
ACS Nano ; 18(18): 11598-11630, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669279

RESUMO

The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA