Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Biomech ; 175: 112283, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232450

RESUMO

Venous thromboembolism (VTE) has been occurring frequently in human society. There is an urgent need to study the influence of several factors on thrombolytic therapy, such as the effects of vascular pressure levels (VPL) and the drug injection time (DIT). Considering blood as a non-Newtonian fluid, valve as a hyperelastic material, and thrombus as a porous medium, a new numerical simulation model of biofluid mechanics incorporating fluid-solid coupling phenomena and biochemical substance reactions is established based on the N-S equations and the convection-diffusion reaction equations. Then, a unique in vitro experimental platform is established to verify the correctness of the constructed mathematical model. The results showed that vascular compression resulted in significant differences in blood flow status localized within the vessel. Vascular compression causes the blood boosting index to fluctuate and the valve displacement values are 135% and 158% greater than the lower VPL, respectively. At the same time, vascular compression weakened vortex intensity, accelerated material transport and response, and improved the treatment. Compared with low VPL, the therapeutic efficacy increased by 7% and 15%, respectively. In addition, when the dose of the drug is high, different injection times can increase the therapeutic effect to different degrees, with a maximum difference of 12%. Our in vitro experiments are similar to the results obtained by numerical simulation, which can verify the reliability of numerical simulation. The computational model proposed and the experimental platform designed in this study have the potential to assist in clinical medication prediction in different venous thromboembolism patients.


Assuntos
Simulação por Computador , Modelos Cardiovasculares , Terapia Trombolítica , Humanos , Terapia Trombolítica/métodos , Tromboembolia Venosa/tratamento farmacológico , Fibrinolíticos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos
2.
Heliyon ; 10(15): e35491, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170438

RESUMO

As a classical traditional Chinese patent medicine, Shugan Yipi Granule is widely used in China to treat non-alcoholic fatty liver disease (NAFLD) recently. Our previous study confirmed that Shugan Yipi Granule are effective in NAFLD. However, its underlying mechanism is still unknown. This study aims to investigate the mechanism of Shugan Yipi Granule on NAFLD based on network pharmacology prediction, liquid chromatography-mass spectrometry (LC-MS) analysis and in vitro verification. We obtained the active ingredients and targets of Shugan Yipi Granule and NAFLD from 6 traditional Chinese medicine databases, and the crucial components and targets screened by protein-protein interaction (PPI) network were used for molecular docking. Plasma metabolomics of NAFLD patients treated with Shugan Yipi Granule for one month was analyzed using LC-MS methods and MetaboAnalyst 4.0 to obtain significant differential metabolites and pathways. Finally, free fatty acid (FFA) induced HepG2 cells were treated with different concentrations of quercetin and kaempferol, then oil red o (ORO) and triglyceride (TG) level were tested to verify the lipid deposition of the cell. Network pharmacology analysis showed that the main active ingredients of Shugan Yipi Granule include quercetin, kaempferol and other 58 ones, as well as 188 potential targets. PI3K/Akt signaling pathway was found to be the most relevant pathway for the treatment of NAFLD. Non-targeted metabolomics showed that quercetin and kaempferol were significantly up-regulated differential metabolites and were involved in metabolic pathways such as thyroid hormone signaling. In vitro results showed that quercetin, kaempferol were effective in reducing lipid deposition and TG content by inhibiting cellular fatty acid uptake. Ultimately, with the network pharmacology and serum metabolomics analysis, quercetin and kaempferol were found to be the important active ingredients and significantly up-regulated differential metabolites of Shugan Yipi Granule against NAFLD, which we inferred that they may regulate NAFLD through PI3K/Akt signaling pathway and thyroid hormone metabolism pathway. The in vitro experiment verification results showed that quercetin and kaempferol attenuated the lipid accumulation and TG content by inhibiting the fatty acid uptake in the FFA-induced HepG2 cell. Current study provides the necessary experimental basis for subsequent in-depth mechanism research.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39108110

RESUMO

BACKGROUND: Hispolon, a phenolic compound isolated from the medicinal yellow fungal mulberry, exhibits a strong anti-triple-negative breast cancer (TNBC) effect. However, the antitumor mechanisms of Hispolon have not been fully explored. OBJECTIVE: In this study, we systematically investigated the mechanism of Hispolon against TNBC based on bioinformatics and in vitro experiments. METHODS: The Hispolon-related targets were first collected from the SwissTarget database. Differential Expression Genes (DEG) were screened between TNBC and normal breast tissue using the Gene Expression Comprehensive (GEO) dataset. The overlapping targets between Hispolon and DEG were analyzed by plotting Venn maps. Protein-protein interaction (PPI) network was constructed to analyze the interactions among these targets. The focus was on mining the core targets of anti-TNBC effects of Hispolon via the Cytohubba and MCODE plugin of Cytoscape 3.7.2 software. We performed survival analysis on these core targets to screen the best-matched targets, including EGFR, KIT, and PLAU. This correlated strongly with our validation of Hispolon by molecular docking. In addition, Gene Ontology (GO) anal-ysis and KEGG pathway analysis were performed using R software (ClusterProfiler package). Finally, in vitro experiments were performed to assess the accuracy of predicted target genes. RESULTS: The ADME results suggested that Hispolon has great potential to develop into a drug. Twenty overlapping targets were screened by matching the 107 targets of Hispolon to the 2,013 targets of TNBC DEG. Seven core targets of Hispolon against TNBC were initially identified, including EGFR, IGFBP3, MMP9, MMP2, MMP1, PLAU, and KIT. GO enrich-ment analysis demonstrated that the biological process of Hispolon acting on TNBC mainly involves lymphocyte activation in immune response and phosphatidylinositol-mediated signal-ing. Additionally, the relaxin signaling pathway, estrogen signaling pathway, proteoglycans in cancer, and others might be the key pathways of Hispolon against TNBC. Furthermore, Hispo-lon inhibited the proliferation of MDA-MB-231 cells in a concentration-dependent manner and regulated the RNA and protein expression of the core targets EGFR, PLAU, and KIT for the treatment of TNBC. CONCLUSION: In this study, the polygenic pharmacological mechanism of action of Hispolon against TNBC was explored through network pharmacology and in vitro experiments, provid-ing a new insight into the mechanism of TCM monomer against TNBC.

4.
Skin Res Technol ; 30(9): e70019, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39206771

RESUMO

BACKGROUND: Laser technology is a viable therapeutic option for treating a number of skin pathologic conditions, including pigmented lesions, vascular lesions and acne scars. AIM: In this work, through in vitro and clinical investigations we test the efficacy, the safety and the speed of treatment of high-powered laser system emitting a 675-nm in the management of various skin condition. MATERIALS AND METHODS: In vitro experiments were performed irradiating adult human dermal fibroblasts cells (HDFa) with 675-nm laser for 24, 48 and 72 h with different fluences and Ki-67+ cells were counted. The confocal microscopy images of control and treated samples were acquired. Clinical skin rejuvenation/diseases treatments with 675 nm laser device were performed with different laser parameters in 11 patients with pigmented lesions, 5 patients with acne scars and 23 patients for skin rejuvenation. Data were evaluated with the validated global score using 5-point scales (GAIS) and patient's satisfaction scale. RESULTS: The application of the high-power 675 nm laser has proven effective in stimulating cell proliferation in in vitro experiments and it led to good results for all skin pathologies. GAIS showed values between 3 and 4 points for all treated pathologies, all scores between '75%-good improvements' and '100%-excellent improvements'. The treatment time was reduced by 50% compared to the old parameters setting, resulting in a faster and good patient's satisfying technique. No serious adverse effects were recorded. CONCLUSION: the preclinical and clinical data confirm the efficacy and safety of this high-powered 675 nm laser for several skin condition.


Assuntos
Fibroblastos , Rejuvenescimento , Humanos , Adulto , Feminino , Fibroblastos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Dermatopatias/radioterapia , Dermatopatias/patologia , Proliferação de Células , Resultado do Tratamento , Células Cultivadas , Satisfação do Paciente , Terapia a Laser/métodos , Terapia a Laser/instrumentação , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Acne Vulgar/radioterapia , Acne Vulgar/patologia , Acne Vulgar/complicações , Cicatriz/patologia , Adulto Jovem
5.
Adv Neurobiol ; 37: 65-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39207687

RESUMO

The first line of defense for the central nervous system (CNS) against injury or disease is provided by microglia. Microglia were long believed to stay in a dormant/resting state, reacting only to injury or disease. This view changed dramatically with the development of modern imaging techniques that allowed the study of microglial behavior in the intact brain over time, to reveal the dynamic nature of their responses. Over the past two decades, in vivo imaging using multiphoton microscopy has revealed numerous new functions of microglia in the developing, adult, aged, injured, and diseased CNS. As the most dynamic cells in the brain, microglia continuously contact all structures and cell types, such as glial and vascular cells, neuronal cell bodies, axons, dendrites, and dendritic spines, and are believed to play a central role in sculpting neuronal networks throughout life. Following trauma, or in neurodegenerative or neuroinflammatory diseases, microglial responses range from protective to harmful, underscoring the need to better understand their diverse roles and states in different pathological conditions. In this chapter, we introduce multiphoton microscopy and discuss recent advances in structural and functional imaging technologies that have expanded our toolbox to study microglial states and behaviors in new ways and depths. We also discuss relevant mouse models available for in vivo imaging studies of microglia and review how such studies are constantly refining our understanding of the multifaceted role of microglia in the healthy and diseased CNS.


Assuntos
Microglia , Microglia/metabolismo , Microglia/patologia , Animais , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Encéfalo/diagnóstico por imagem , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia
6.
Bioorg Chem ; 151: 107668, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079393

RESUMO

An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.


Assuntos
Receptores de Serotonina , Receptores de Serotonina/metabolismo , Humanos , Ligantes , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Piperazinas/química , Piperazinas/síntese química , Piperazinas/farmacologia , Hidantoínas/química , Hidantoínas/síntese química , Hidantoínas/farmacologia
7.
Clin Exp Dent Res ; 10(4): e924, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016106

RESUMO

OBJECTIVES: The aim of this in vitro study was to investigate whether and to what extent different scenarios of rotational freedom in different IAC designs affect the vertical dimension of a three-part fixed partial denture (FPD). At the same time, the experimental setup should simulate all clinical and laboratory steps of the implementation of such an FPD as accurately as possible. MATERIAL AND METHODS: Twenty identical pairs of jaw models were fabricated from aluminum, each lower-jaw model holding two implants with conical or flat IACs. Three impressions of each model were taken to fabricate stone casts and three-unit FPDs. Three assembly scenarios were compared for the vertical position stability they offered for these FPDs, differing by how the sequential implant components (impression posts > laboratory analogs > abutments 1 > abutments 2) were aligned with the positional index of the IAC. In this way, a total of 60 stone casts and FPDs were fabricated and statistically analyzed for changes in vertical dimension (p < 0.05). RESULTS: Regardless of whether a conical/flat IAC was used (p > 0.05), significantly greater mean changes in vertical dimension were consistently (all comparisons p < 0.0001) found in a "worst-case scenario" of component alignment alternating between the left- and right-limit stop of the positional index (0.286/0.350 mm) than in a "random scenario" of 10 dentists and 10 technicians with varying levels of experience freely selecting the alignment (0.003/0.014 mm) or in a "best-case scenario" of all components being aligned with the right-limit stop (-0.019/0.005 mm). CONCLUSIONS: The likelihood of integrating a superstructure correctly in terms of vertical dimension appears to vary considerably more with assembly strategies than with IAC designs. Specifically, our findings warrant a recommendation that all implant components should be aligned with the right-limit stop of the positioning index.


Assuntos
Prótese Dentária Fixada por Implante , Prótese Parcial Fixa , Humanos , Prótese Dentária Fixada por Implante/métodos , Rotação , Modelos Dentários , Dente Suporte , Dimensão Vertical , Projeto do Implante Dentário-Pivô/métodos , Implantes Dentários , Técnicas In Vitro , Técnica de Moldagem Odontológica/instrumentação
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999958

RESUMO

Anticancer peptides (ACPs) are bioactive compounds known for their selective cytotoxicity against tumor cells via various mechanisms. Recent studies have demonstrated that in silico machine learning methods are effective in predicting peptides with anticancer activity. In this study, we collected and analyzed over a thousand experimentally verified ACPs, specifically targeting peptides derived from natural sources. We developed a precise prediction model based on their sequence and structural features, and the model's evaluation results suggest its strong predictive ability for anticancer activity. To enhance reliability, we integrated the results of this model with those from other available methods. In total, we identified 176 potential ACPs, some of which were synthesized and further evaluated using the MTT colorimetric assay. All of these putative ACPs exhibited significant anticancer effects and selective cytotoxicity against specific tumor cells. In summary, we present a strategy for identifying and characterizing natural peptides with selective cytotoxicity against cancer cells, which could serve as novel therapeutic agents. Our prediction model can effectively screen new molecules for potential anticancer activity, and the results from in vitro experiments provide compelling evidence of the candidates' anticancer effects and selective cytotoxicity.


Assuntos
Antineoplásicos , Simulação por Computador , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Aprendizado de Máquina , Ensaios de Seleção de Medicamentos Antitumorais
9.
World J Gastrointest Oncol ; 16(7): 3069-3081, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072169

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. As liver cancer often presents no noticeable symptoms in its early stages, most patients are diagnosed at an advanced stage, complicating treatment. Therefore, the identification of new biomarkers is crucial for the early detection and treatment of HCC. Research on exportin-5 (XPO5) could offer new avenues for early diagnosis and improve treatment strategies. AIM: To explore the role of XPO5 in HCC progression and its potential as a prognostic biomarker. METHODS: This study assessed XPO5 mRNA expression in HCC using The Cancer Genome Atlas, TIMER, and International Cancer Genome Consortium databases, correlating it with clinical profiles and disease progression. We performed in vitro experiments to examine the effect of XPO5 on liver cell growth. Gene Set Enrichment Analysis, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology were used to elucidate the biological roles and signaling pathways. We also evaluated XPO5's impact on immune cell infiltration and validated its prognostic potential using machine learning. RESULTS: XPO5 was significantly upregulated in HCC tissues, correlating with tumor grade, T-stage, and overall survival, indicating poor prognosis. Enrichment analyses linked high XPO5 expression with tumor immunity, particularly CD4 T cell memory activation and macrophage M0 infiltration. Drug sensitivity tests identified potential therapeutic agents such as MG-132, paclitaxel, and WH-4-023. Overexpression of XPO5 in HCC cells, compared to normal liver cells, was confirmed by western blotting and quantitative real-time polymerase chain reaction. The lentiviral transduction-mediated knockdown of XPO5 significantly reduced cell proliferation and metastasis. Among the various machine learning algorithms, the C5.0 decision tree algorithm achieved accuracy rates of 95.5% in the training set and 92.0% in the validation set. CONCLUSION: Our analysis shows that XPO5 expression is a reliable prognostic indicator for patients with HCC and is significantly associated with immune cell infiltration.

10.
Drug Chem Toxicol ; : 1-11, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072491

RESUMO

5-hydroxymethyl-2-furfural (5-HMF) is a by-product of Maillard reaction and widely exists in food and environment, which may lead to lung cancer. However, the relevant mechanism is unknown. This study aims to predict the key targets of 5-HMF-induced lung cancer through network toxicology, analyze the relationship between the key targets and lung cancer through network informatics, and further validate them through in vitro experiments. By using ChEMBL, STITCH, GeneCards, and OMIM databases, 51 toxic targets were identified. GO and KEGG enrichment analyses indicated a strong correlation between toxic targets and lung cancer. Through protein-protein interaction (PPI) analysis, MAPK3, MAPK1, and SRC were identified as key targets implicated in 5-HMF-induced lung cancer. The HPA database showed high expression of these three key targets in lung cancer tissues. Kaplan-Meier database demonstrated that the higher expression of these key targets in lung cancer patients was associated with a poorer prognosis. The TIMER database revealed that the high expression of these key targets had a significant impact on the level of immune cell infiltration in lung cancer, particularly impacting CD4+ T cells and macrophages. Finaly, in In vitro experiments demonstrated that prolonged exposure to 5-HMF induced malignant transformation of BEAS-2B cells and the upregulation of key targets. The findings suggest that 5-HMF is a contributing factor in the development of lung cancer, with MAPK3, MAPK1, and SRC potentially playing crucial roles in this process.

11.
J Biomech ; 171: 112159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38852480

RESUMO

Degenerative disc disease (DDD), regardless of its phenotype and clinical grade, is widely associated with low back pain (LBP), which remains the single leading cause of disability worldwide. This work provides a quantitative methodology for comparatively investigating artificial IVD degeneration via two popular approaches: enzymatic denaturation and fatigue loading. An in-vitro animal study was used to study the time-dependent responses of forty fresh juvenile porcine thoracic IVDs in conjunction with inverse and forward finite element (FE) simulations. The IVDs were dissected from 6-month-old-juvenile pigs and equally assigned to 5 groups (intact, denatured, low-level, medium-level, high-level fatigue loading). Upon preloading, a sinusoid cyclic load (Peak-to-peak/0.1-to-0.8 MPa) was applied (0.01-10 Hz), and dynamic-mechanical-analyses (DMA) was performed. The DMA outcomes were integrated with a robust meta-model analysis to quantify the poroelastic IVD characteristics, while specimen-specific FE models were developed to study the detailed responses. The results demonstrated that enzymatic denaturation had a more significantly pronounced effect on the resistive strength and shock attenuation capabilities of the intervertebral discs. This can be attributed to the simultaneous disruption of the collagen fibers and water-proteoglycan bonds induced by trypsin digestion. Fatigue loading, on the other hand, primarily influenced the disc's resistance to deformation in a frequency-dependent pattern, where alterations were most noticeable at low loading frequencies. This study confirms the intricate interplay between the biochemical changes induced by enzymatic processes and the mechanical behavior stemming from fatigue loading, suggesting the need for a comprehensive approach to closely mimic the interrelated multifaceted processes of human disc degeneration.


Assuntos
Análise de Elementos Finitos , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Degeneração do Disco Intervertebral/fisiopatologia , Disco Intervertebral/fisiopatologia , Suínos , Estresse Mecânico , Suporte de Carga/fisiologia , Desnaturação Proteica , Fenômenos Biomecânicos , Modelos Biológicos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38706357

RESUMO

BACKGROUND: Bone metabolic diseases are serious health issues worldwide. Angelica sinensis (AS) is traditionally used in Chinese medicine for treating bone metabolism diseases clinically. However, the mechanism of AS in regulating bone metabolism remains uncertain. OBJECTIVE: The current investigation was structured to elucidate the potential mechanisms of AS for modulating bone metabolism. METHODS: Firstly, targets of AS regulating bone metabolism were collected by network pharmacology. Then, the transcriptional regulation of RUNX2 was enriched as one of the key pathways for AS to regulate bone metabolism, constructing its metabolic network. Secondly, combining molecular docking, network efficiency, and network flux analyses, we conducted a quantitative evaluation of the metabolic network to reveal the potential mechanisms and components of AS regulating bone metabolism. Finally, we explored the effect of AS on the differentiation of osteoclasts from M-CSF and RANKL-induced RAW264.7 cells, as well as its impact on the osteogenic induction of MC3T3-E1 cells. We verified the mechanism and key targets of AS on bone metabolism using qRT-PCR. Furthermore, the key component was preliminarily validated through molecular dynamics simulation. RESULTS: Quantitative metabolic network of the transcriptional regulation of RUNX2 was constructed to illustrate the potential mechanism of AS for regulating bone metabolism, indicating that ferulic acid may be a pharmacological component of AS that interferes with bone metabolism. AS suppressed osteoclast differentiation in M-CSF and RANKL-induced RAW264.7 cells and reversed the expressions of osteoclastic differentiation markers, including RUNX2 and SRC. Additionally, AS induced osteogenic generation in MC3T3-E1 cells and reversed the expressions of markers associated with osteoblastic generation, such as RUNX2 and HDAC4. Molecular dynamics simulation displayed a strong binding affinity among ferulic acid, HDAC4 and SRC. CONCLUSION: This study reveals a systematic perspective on the intervention bone mechanism of AS by transcriptive regulation by RUNX2, guiding the clinical use of AS in treating diseases of the skeletal system.

13.
MethodsX ; 12: 102691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660042

RESUMO

In this study, we synthesized novel α,ß-unsaturated 2-cyanoacetamide derivatives (1-5) using microwave-assisted Knoevenagel condensation. Characterization of these compounds was carried out using FTIR and 1H NMR spectroscopy. We then evaluated their in vitro antibacterial activity against both gram-positive and gram-negative pathogenic bacteria. Additionally, we employed in silico methods, including ADMET prediction and density functional theory (DFT) calculations of molecular orbital properties, to investigate these cyanoacetamide derivatives (1-5). Molecular docking was used to assess the binding interactions of these derivatives (1-5) with seven target proteins (5MM8, 4NZZ, 7FEQ, 5NIJ, ITM2, 6SE1, and 5GVZ) and compared them to the reference standard tyrphostin AG99. Notably, derivative 5 exhibited the most favorable binding affinity, with a binding energy of -7.7 kcal mol-1 when interacting with the staphylococcus aureus (PDB:5MM8), while also meeting all drug-likeness criteria. Additionally, molecular dynamics simulations were carried out to evaluate the stability of the interaction between the protein and ligand, utilizing parameters such as Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), Radius of Gyration (Rg), and Principal Component Analysis (PCA). A 50 nanosecond molecular dynamics (MD) simulation was performed to investigate stability further, incorporating RMSD and RMSF analyses on compound 5 within the active binding site of the modeled protein across different temperatures (300, 305, 310, and 320 K). Among these temperatures, compound 5 exhibited an RMSD value ranging from approximately 0.2 to 0.3 nm at 310 K (body temperature) with the 5MM8 target, which differed from the other temperature conditions. The in silico results suggest that compound 5 maintained significant conformational stability throughout the 50 ns simulation period. It is consistent with its low docking energy and in vitro findings concerning α,ß-unsaturated cyanoacetamides. Key insights from this study include:•The creation of innovative α,ß-unsaturated 2-cyanoacetamide derivatives (1-5) employing cost-effective, licensed, versatile, and efficient software for both in silico and in vitro assessment of antibacterial activity.•Utilization of FTIR and NMR techniques for characterizing compounds 1-5.

14.
J Orthop Surg Res ; 19(1): 259, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659060

RESUMO

PURPOSE: The purpose of the study was to describe a novel growth guidance system, which can avoid metal debris and reduce the sliding friction forces, and test the durability and glidability of the system by in vitro test. METHOD: Two major modifications were made to the traditional Shilla system, including the use of ultra-high molecular weight polyethylene (UHMWPE) gaskets to avoid direct contact between the screw and rod, and polishing the surface of the sliding part of the rod. We tested the durability of the system by a fatigue test, which the samples were test on the MTS system for a 10 million cycle of a constant displacement. Pre and post-testing involved weighing the UHMWPE gaskets and observing the wear conditions. The sliding ability were measured by a sliding displacement test. The maximum sliding displacement of the system was measured after a 300 cycles of dynamic compressive loads in a sinusoidal waveform. RESULTS: After the fatigue test, all the UHMWPE gaskets samples showed some of the fretting on the edge of the inner sides, but its still isolated and avoided the friction between the screws and rods. There was no production of metallic fretting around the sliding screws and rods. The average wear mass of the UHMWPE gaskets was 0.002 ± 0.001 g, less than 1.7% of the original mass. In the sliding test, the novel growth guidance system demonstrated the best sliding ability, with an average maximum sliding distance(AMSD) of 35.75 ± 5.73 mm, significantly better than the group of the traditional Shilla technique(AMSD 3.65 ± 0.46 mm, P < 0.0001). CONCLUSION: In conclusion, we modified the Shilla technique and designed a novel growth guidance system by changing the friction interface of sliding screw and rod, which may significantly reduce the metallic debris and promote spine growth. The fatigue test and sliding dislocation test demonstrated the better durability and glidability of the system. An in vivo animal experiment should be performed to further verify the system.


Assuntos
Teste de Materiais , Polietilenos , Escoliose , Humanos , Teste de Materiais/métodos , Fricção , Parafusos Ósseos , Técnicas In Vitro
15.
Aging (Albany NY) ; 16(4): 3386-3403, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345573

RESUMO

BACKGROUND: Cisplatin (DDP) is one of the important chemotherapy drugs for patients with advanced gastric cancer and metastasis, but its resistance is a bottleneck problem that affects clinical efficacy and patient survival. Eremias multiocellata (EM) is a traditional Chinese herbal medicine, which has been used in the treatment of precancerous lesions, gastric cancer, liver fibrosis, and other digestive diseases. However, the mechanism of reducing chemotherapy resistance to gastric cancer is still unclear. METHODS: We used the MTT assay to evaluate the proliferative viability of gastric cancer parental cell line MKN45 and its drug-resistant cell line MKN45/DDP, and compared their drug-resistance indices. The migration and invasion abilities of MKN45/DDP drug-resistant cells were evaluated using the Transwell assay. Apoptosis in MKN45/DDP drug-resistant cells was detected using flow cytometry. The effect of a combination of EM and cisplatin on the levels of reactive oxygen species (ROS) and lipid peroxides (LPO) in cisplatin-resistant gastric cancer cells was detected using ROS fluorescent probes and a lipid peroxidation assay kit in conjunction with flow cytometry. The effect of EM combined with cisplatin on the level of iron ions was detected by fluorescence probe and confocal laser technique. Hematoxylin-eosin staining (HE staining) was used to detect the histopathologic morphology of drug-resistant gastric cancer in nude mice. Ferroptosis-related proteins were measured using immunohistochemistry. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect tumor drug resistance-related genes. The NF-κB/Snail pathway-related proteins, PI3K/AKT/mTOR pathway-related proteins, and drug resistance-related proteins were detected by Western blot. RESULTS AND CONCLUSIONS: The results of in vitro and in vivo experiments showed that EM combined with DDP could effectively inhibit the migration and invasive ability of MKN45/DDP cells, as well as induce apoptosis of MKN45/DDP cells; the combination of the two drugs could significantly increase the levels of ROS, lipid peroxidation and divalent ferric ions in MKN45/DDP cells, at the same time reducing the levels of Ferroptosis-related proteins, which could induce Ferroptosis. In addition, EM combined with DDP can also exert the effect of reversing DDP resistance and increasing the sensitivity of gastric cancer drug-resistant cells to DDP by regulating the NF-κB/Snail signaling pathway, PI3K/AKT/mTOR signaling pathway, and the expression of drug resistance-related proteins and genes.


Assuntos
Cisplatino , Neoplasias Gástricas , Animais , Camundongos , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Gástricas/genética , Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio , Apoptose , Serina-Treonina Quinases TOR , Íons/farmacologia , Íons/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
16.
Curr Pharm Des ; 30(4): 278-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310568

RESUMO

BACKGROUND: Chaiqin Qingning capsule (CQQNC) has been used to relieve pain in practice. However, the active components, pain targets, and molecular mechanisms for pain control are unclear. OBJECTIVE: To explore the active components and potential mechanisms of the analgesic effect of CQQNC through network pharmacology and in vitro experiments. METHODS: The main active components and the corresponding targets of CQQNC were screened from the TCMSP and the SwissTargetPrediction databases. Pain-related targets were selected in the OMIM, Gene- Cards, and DrugBank databases. These targets were intersected to obtain potential analgesic targets. The analgesic targets were imported into the STRING and DAVID databases for protein-protein interaction (PPI), gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Cytoscape software (V3.7.1) was used to construct an active component-intersection network. Finally, the key components were docked with the core targets. The analgesic mechanism of CQQNC was verified by RAW264.7 cell experiment. RESULTS: 30 active CQQNC components, 617 corresponding targets, and 3,214 pain-related target genes were found. The main active components were quercetin, kaempferol, and chenodeoxycholic acid etc. The key targets were ALB, AKT1, TNF, IL6, TP53, IL1B, and SRC. CQQNC can exert an analgesic effect through PI3K-Akt, MAPK signaling pathways, etc. Molecular docking showed that these active components had good binding activities with key targets. The results of in vitro experiments showed that CQQNC could exert antiinflammatory and analgesic effects through MAPK/AKT/NF-kB signaling pathways. CONCLUSION: CQQNC exerts pain control through inhibiting MAPK/AKT/NF-kB signaling pathways.


Assuntos
Analgésicos , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Dor , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Camundongos , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos/farmacologia , Analgésicos/química , Células RAW 264.7 , Cápsulas , Humanos , Simulação de Acoplamento Molecular
17.
Proc Natl Acad Sci U S A ; 121(2): e2309125121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175871

RESUMO

Living systems adopt a diversity of curved and highly dynamic shapes. These diverse morphologies appear on many length scales, from cells to tissues and organismal scales. The common driving force for these dynamic shape changes are contractile stresses generated by myosin motors in the cell cytoskeleton, that converts chemical energy into mechanical work. A good understanding of how contractile stresses in the cytoskeleton arise into different three-dimensional (3D) shapes and what are the shape selection rules that determine their final configurations is still lacking. To obtain insight into the relevant physical mechanisms, we recreate the actomyosin cytoskeleton in vitro, with precisely controlled composition and initial geometry. A set of actomyosin gel discs, intrinsically identical but of variable initial geometry, dynamically self-organize into a family of 3D shapes, such as domes and wrinkled shapes, without the need for specific preprogramming or additional regulation. Shape deformation is driven by the spontaneous emergence of stress gradients driven by myosin and is encoded in the initial disc radius to thickness aspect ratio, which may indicate shaping scalability. Our results suggest that while the dynamical pathways may depend on the detailed interactions between the different microscopic components within the gel, the final selected shapes obey the general theory of elastic deformations of thin sheets. Altogether, our results emphasize the importance for the emergence of active stress gradients for buckling-driven shape deformations and provide insights on the mechanically induced spontaneous shape transitions in contractile active matter, revealing potential shared mechanisms with living systems across scales.


Assuntos
Citoesqueleto de Actina , Actomiosina , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Microtúbulos/metabolismo
18.
Aging (Albany NY) ; 16(2): 1781-1795, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38244591

RESUMO

OBJECTIVE: The aim of this paper is to mine ferroptosis genes associated with breast cancer based on bioinformatics and machine learning, and to perform in vitro functional validation. METHODS: Transcriptional and clinical data of breast cancer patients were downloaded from TCGA database and ferroptosis-related genes were obtained from FerrDB database. Significant differentially expressed ferroptosis-related genes between breast cancer tissues and adjacent normal tissues were selected. Functional enrichment analysis was performed on these differentially expressed genes. Four machine learning algorithms were used to identify key ferroptosis-related genes associated with breast cancer. A multi-factor Cox regression analysis was used to construct a risk score model for the key ferroptosis-related genes. The accuracy of the risk score model was validated using Kaplan-Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis. Finally, cell experiments were conducted to validate the biological functions of the key ferroptosis-related genes in breast cancer cells MCF-7, further confirming the accuracy of the analysis results. RESULTS: A total of 52 significantly differentially expressed ferroptosis-related genes were identified, which were mainly enriched in cancer pathways, central carbon metabolism in cancer, HIF-1 signaling pathway, and NOD-like receptor signaling pathway. Three key ferroptosis-related genes (TXNIP, SLC2A1, ATF3) closely related to the occurrence, development, and prognosis of breast cancer were identified using machine learning algorithms. The risk model constructed using these three key ferroptosis-related genes showed that the prognosis of the low-risk group was better than that of the high-risk group (P < 0.001). The ROC curve analysis showed that the prognosis model had good predictive ability. In vitro experiments validated the reliability of the bioinformatics and machine learning screening results. Downregulation of SLC2A1 expression promoted ferroptosis and suppressed tumor cell growth in breast cancer cells (P < 0.01), while overexpression of TXNIP or ATF3 had the same effect (P < 0.01). CONCLUSION: This study identified three key ferroptosis-related genes (TXNIP, SLC2A1, ATF3) associated with breast cancer, which are closely related to the occurrence, development, and prognosis of breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Ferroptose/genética , Reprodutibilidade dos Testes , Biologia Computacional
19.
Cardiovasc Eng Technol ; 15(2): 211-223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191806

RESUMO

PURPOSE: Intravascular endoscopy can aid in the diagnosis of coronary atherosclerosis by providing direct color images of coronary plaques. The procedure requires a blood-free optical path between the catheter and plaque, and achieving clearance safely remains an engineering challenge. In this study, we investigate the hemodynamics of saline flushing in partially occluded coronary arteries to advance the development of intravascular forward-imaging catheters that do not require balloon occlusion. METHODS: In-vitro experiments and CFD simulations are used to quantify the influence of plaque size, catheter stand-off distance, saline injection flowrate, and injection orientation on the time required to achieve blood clearance. RESULTS: Experiments and simulation of saline injection from a dual-lumen catheter demonstrated that flushing times increase both as injection flow rate (Reynolds number) decreases and as the catheter moves distally away from the plaque. CFD simulations demonstrated that successful flushing was achieved regardless of lumen axial orientation in a 95% occluded artery. Flushing time was also found to increase as plaque size decreases for a set injection flowrate, and a lower limit for injection flowrate was found to exist for each plaques size, below which clearance was not achieved. For the three occlusion sizes investigated (90, 95, 97% by area), successful occlusion was achieved in less than 1.2 s. Investigation of the pressure fields developed during injection, highlight that rapid clearance can be achieved while keeping the arterial overpressure to < 1 mmHg. CONCLUSIONS: A dual lumen saline injection catheter was shown to produce clearance safely and effectively in models of partially occluded coronary arteries. Clearance was achieved across a range of engineering and clinical parameters without the use of a balloon occlusion, providing development guideposts for a fluid injection system in forward-imaging coronary endoscopes.


Assuntos
Vasos Coronários , Hemodinâmica , Modelos Cardiovasculares , Solução Salina , Solução Salina/administração & dosagem , Vasos Coronários/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Humanos , Simulação por Computador , Circulação Coronária , Placa Aterosclerótica , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Desenho de Equipamento , Cateteres Cardíacos , Endoscopia/instrumentação , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/fisiopatologia , Oclusão Coronária/terapia , Fatores de Tempo
20.
Food Res Int ; 176: 113815, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163719

RESUMO

Gastrojejunostomy is a prominent approach in managing distal gastric cancer that is unresectable due to gastric outlet obstruction (GOO). Research has demonstrated that stomach-partitioning gastrojejunostomy (SPGJ) exhibits superior clinical efficacy compared to conventional gastrojejunostomy (CGJ), however, the underlying mechanism of this phenomenon remains elusive. This study constructed 3D models of the SPGJ and CGJ based on the computed tomography (CT) images obtained from a patient diagnosed with distal gastric cancer. The biomechanical patterns of these procedures in the digestive system were subsequently compared through numerical simulations and in vitro experiments. The results of the numerical simulation demonstrated that the model following SPGJ promoted the discharge of food through the anastomotic orifice and into the lower jejunum. Furthermore, a decrease in passage size after partitioning, the low-level velocity of esophageal, and an increase in contents viscosity effectively inhibited the flow through the passage to the pylorus, ultimately reducing stimulation to tumor. The study also revealed that favorable gastric emptying is associated with a smaller passage and faster inlet velocity, and that lower contents viscosity. ​The experimental findings conducted in vitro demonstrated that SPGJ exhibited superior efficacy in obstructing the flow near the pylorus in comparison to CGJ. Moreover, a decrease in passage size correlates with a reduction in fluid flow towards the pylorus. These results provide the foundation of theory and practice for the surgical management of patients with GOO resulting from unresectable distal gastric cancer, and have potential implications for clinical interventions.


Assuntos
Derivação Gástrica , Obstrução da Saída Gástrica , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/complicações , Derivação Gástrica/métodos , Esvaziamento Gástrico , Resultado do Tratamento , Obstrução da Saída Gástrica/complicações , Obstrução da Saída Gástrica/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA