Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Food Microbiol ; 416: 110681, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38490108

RESUMO

In recent years, the presence of molecules derived from aromatic amino acids in wines has been increasingly demonstrated to have a significant influence on wine quality and stability. In addition, interactions between different yeast species have been observed to influence these final properties. In this study, a screening of 81 yeast strains from different environments was carried out to establish a consortium that would promote the improvement of indolic compound levels in wine. Two strains, Saccharomyces uvarum and Saccharomyces eubayanus, with robust fermentative capacity were selected to be combined with a Saccharomyces cerevisiae strain with a predisposition towards the production of indolic compounds. Fermentation dynamics were studied in pure cultures, co-inoculations and sequential inoculations, analysing strain interactions and end-of-fermentation characteristics. Fermentations showing significant interactions were further analyzed for the resulting indolic compounds and aroma profile, with the aim of observing potential interactions and synergies resulting from the combination of different strains in the final wine. Sequential inoculation of S. cerevisiae after S. uvarum or S. eubayanus was observed to increase indolic compound levels, particularly serotonin and 3-indoleacetic acid. This study is the first to demonstrate how the formation of microbial consortia can serve as a useful strategy to enhance compounds with interesting properties in wine, paving the way for future studies and combinations.


Assuntos
Saccharomyces , Vinho , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Triptofano/análise , Triptofano/metabolismo , Fermentação , Saccharomyces/metabolismo
2.
Plant Sci ; 321: 111321, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696921

RESUMO

Phytocytokines are endogenous danger peptides that are actively released after a pest or pathogen attack, triggering an amplification of plant immune responses. Here, we found that Systemin, a peptide from tomato, has a substantial impact at the molecular level in Arabidopsis plants that leads to induced resistance against Plectosphaerella cucumerina. Using transcriptional and metabolomics approaches, and loss-of-function mutants to analyse the molecular mechanisms underlying induced resistance against the necrotroph, we decipher the enhanced molecular responses in Systemin-treated plants following infection. Some protein complexes involved in the response to other damage signals, including the BAK1-BIK1 protein complex and heterotrimeric G proteins, as well as MPK activation, were among the early signalling events triggered by Systemin in Arabidopsis upon infection. Non-targeted analysis of the late responses underlying Systemin-Induced Resistance1 (Sys-IR) showed that phenolic and indolic compounds were the most representative groups in the Systemin metabolic fingerprint. Lack of flavonoids resulted in the impairment of Sys-IR. On the other hand, some indolic compounds showed a priming profile and were also essential for functional Sys-IR. Evidence presented here shows that plants can sense heterologous peptides from other species as danger signals driving the participation of common protein cascades activated in the PTI and promoting enhanced resistance against necrotrophic fungus.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases , Triptofano/metabolismo
3.
Food Chem ; 374: 131742, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34891088

RESUMO

Yeasts can synthetise bioactive compounds such as Melatonin (MEL), Serotonin (SER) and Hydroxytyrosol (HT). Deciphering the mechanisms involved in their formation can lead to exploit this fact to increase the bioactive potential of fermented beverages. Quantitative analysis using labelled compounds, 15-N2 l-tryptophan and 13-C tyrosine, allowed tracking the formation of the above-mentioned bioactive compounds during the alcoholic fermentation of synthetic must by two different Saccharomyces cerevisiae strains. Labelled and unlabelled MEL, SER and HT were undoubtedly identified and quantified by High Resolution Mass Spectrometry (HRMS). Our results prove that there are at least two pathways involved in MEL biosynthesis by yeast. One starts with tryptophan as precursor being known for the vertebrates' pathway. Additionally, MEL is produced from SER which in turn is consistent with the plants' biosynthesis pathway. Concerning HT, it can be formed both from labelled tyrosine and from intermediates of the Erlich pathway.


Assuntos
Melatonina , Saccharomyces cerevisiae , Fermentação , Bebidas Fermentadas , Álcool Feniletílico/análogos & derivados , Serotonina
4.
J Pineal Res ; 66(3): e12554, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633359

RESUMO

Melatonin (Mel), originally considered a neurohormone, has been detected in beverages and food-fermented products in which yeast metabolism is highly important. This indolamine is synthesized from serotonin, with L-tryptophan being the initial substrate of both. Regarding Mel metabolism, the biosynthetic pathway in mammals consists in four-step reactions. However, six genes are implicated in the synthesis of Mel in plants, which suggest the presence of many pathways. The aim of this study was to provide new empirical data on the production of Mel and other indole-related compounds in the yeast Saccharomyces cerevisiae (S. cerevisiae). To this end, we performed the addition of the pathway intermediates in S. cerevisiae cells in different growth stages (exponential and arrested cells) to follow the bioconversion and new indolic compound production from them. The different bioconverted indolic compounds tested (L-tryptophan, 5-hydroxytryptophan, tryptamine, serotonin, N-acetylserotonin, 5-methoxytryptamine, and Mel) were analyzed by UHPLC-MS/MS from the extra- and intracellular contents. Our results showed that serotonin, in yeast, was prevalently formed via tryptophan decarboxylation, followed by tryptamine hydroxylation as in plants. Mel production from serotonin can be achieved by either N-acetylation, followed by O-methylation or O-methylation, in turn followed by N-acetylation. Accordingly, the classic pathway of Mel synthesis in vertebrates does not seems prevalent in yeast.


Assuntos
Melatonina/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Molecules ; 23(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875344

RESUMO

The problem of the correlation of indolic molecules with special regard to melatonin and immune processes has been widely investigated. However, there are only few studies focusing on circadian variation of peripheral blood leukocytes. The purpose of this study is thus to understand the influence of MLT on leukocyte populations and its correlation with leukocyte distribution. This is accomplished by administrating placebo and melatonin to different groups of individuals and by performing a biophysical Gaussian analysis on the number of leukocytes by means of a comparison of their p.m. vs. a.m. variations under the effect of placebo and of melatonin and via a comparison in the morning between leukocytes population of untreated group and MLT group. It is shown that: (a) melatonin has the effect of narrowing the normal distribution concentrating most of the individuals towards the mean value of the observed variation of leukocytes population and (b) the individuals who have not received either placebo or supplement have a leukocyte population that follows a normal distribution. These results confirm the crucial role played by melatonin, as the most representative of indolic amide in biological systems, in the circadian peripheral variations of leukocyte numbers because counts of white blood cells are essential in medical urgency and differential diagnosis situations. Hence, further studies are suggested to account for these physiological variations and for the evaluation of the full involvement of the action of MLT on leukocytes distribution.


Assuntos
Amidas/metabolismo , Interpretação Estatística de Dados , Indóis/metabolismo , Contagem de Leucócitos , Leucócitos/efeitos dos fármacos , Melatonina/farmacologia , Adulto , Fenômenos Biofísicos , Ritmo Circadiano , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Melatonina/administração & dosagem , Pessoa de Meia-Idade , Placebos
6.
Food Chem ; 217: 431-437, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664655

RESUMO

Melatonin is a neurohormone involved in the regulation of circadian rhythms in humans. Evidence has recently been found of its occurrence in wines and its role in the winemaking process. The yeast Saccharomyces cerevisiae is consequently thought to be important in Melatonin synthesis, but limited data and reference texts are available on this synthetic pathway. This paper aims to elucidate whether the synthetic pathway of Melatonin in Saccharomyces and non-Saccharomyces strains involves these intermediates. To this end, seven commercial strains comprising Saccharomyces cerevisiae (Red Fruit, ES488, Lalvin QA23, Uvaferm BC, and Lalvin ICV GRE) and non-Saccharomyces (Torulaspora delbrueckii and Metschnikowia pulcherrima) were monitored, under controlled fermentation conditions, in synthetic must, for seven days. Samples were analysed using a UHPLC-HRMS system (Qexactive). Five out of the seven strains formed Melatonin during the fermentation process: three S. cerevisiae strains and the two non-Saccharomyces. Additionally, other compounds derived from l-tryptophan occurred during fermentation.


Assuntos
Fermentação/fisiologia , Melatonina/metabolismo , Saccharomyces cerevisiae/metabolismo , Triptofano/metabolismo , Vinho , Aromatizantes/isolamento & purificação , Aromatizantes/metabolismo , Melatonina/isolamento & purificação , Saccharomyces/metabolismo , Triptofano/isolamento & purificação , Vinho/análise
7.
Int J Mol Sci ; 17(3): 341, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26959015

RESUMO

For several years, oncostatic and antiproliferative properties, as well as thoses of cell death induction through 5-methoxy-N-acetiltryptamine or melatonin treatment, have been known. Paradoxically, its remarkable scavenger, cytoprotective and anti-apoptotic characteristics in neurodegeneration models, such as Alzheimer's disease and Parkinson's disease are known too. Analogous results have been confirmed by a large literature to be associated to the use of many other bioactive molecules such as resveratrol, tocopherol derivatives or vitamin E and others. It is interesting to note that the two opposite situations, namely the neoplastic pathology and the neurodegeneration, are characterized by deep alterations of the metabolome, of mitochondrial function and of oxygen consumption, so that the oncostatic and cytoprotective action can find a potential rationalization because of the different metabolic and mitochondrial situations, and in the effect that these molecules exercise on the mitochondrial function. In this review we discuss historical and general aspects of melatonin, relations between cancers and the metabolome and between neurodegeneration and the metabolome, and the possible effects of melatonin and of other bioactive molecules on metabolic and mitochondrial dynamics. Finally, we suggest a common general mechanism as responsible for the oncostatic/cytoprotective effect of melatonin and of other molecules examined.


Assuntos
Respiração Celular/efeitos dos fármacos , Citostáticos/farmacologia , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Humanos , Metaboloma/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Consumo de Oxigênio/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-24579066

RESUMO

Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains resistant to antibiotics have been easily selected in vitro. In this study, we evaluated the activity of new synthetic bis-indole derivatives against this pathogen. Minimum inhibitory concentrations (MICs) of four compounds (dcm01 to dcm04) were determined for the reference strains F. tularensis subsp. holarctica LVS NCTC10857, F. tularensis subsp. novicida CIP56.12 and F. philomiragia ATCC25015, and for 41 clinical strains of F. tularensis subsp. holarctica isolated in France. Minimal bactericidal concentrations (MBCs) were determined for the dcm02 and dcm04 compounds for the LVS and two clinical strains. Killing curves were also determined for the same three strains exposed to dcm04. All tested bis-indole compounds were bacteriostatic against F. tularensis subsp. holarctica strains, with a MIC90 of 8 µg/mL for dcm01, dcm02, and dcm03, and 2 µg/mL for dcm04. Only one strain was resistant to both dcm01 and dcm03, with MICs > 32 µg/mL. In contrast, F. tularensis subsp. novicida was resistant to all derivatives and F. philomiragia was only susceptible to dcm02 and dcm04, with MICs of 16 and 4 µg/mL, respectively. MBC and killing curve experiments revealed significant bactericidal activity (i.e., 3-log reduction of the bacterial inoculum) of the dcm02 and dcm04 compounds only for the LVS strain. In conclusion, we have identified novel synthetic bis-indole compounds that are active against F. tularensis subsp. holarctica. They may be drug candidates for the development of new therapeutic alternatives for tularaemia treatment. Their further characterization is needed, especially identification of their bacterial targets.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Francisella tularensis/efeitos dos fármacos , Indóis/isolamento & purificação , Indóis/farmacologia , Antibacterianos/química , França , Francisella tularensis/isolamento & purificação , Humanos , Indóis/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tularemia/microbiologia
9.
Rev. colomb. biotecnol ; 15(2): 115-123, jul.-dic. 2013. graf
Artigo em Inglês | LILACS | ID: lil-703344

RESUMO

Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like rock phosphate has been proposed. However, direct use of rock phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO4)2 and Rock Phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compounds was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg.L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL.h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg.mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrophic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.


El fósforo es limitante para el crecimiento de plantas de maíz y debido a eso se ha propuesto el uso de fertilizantes como la roca fosfórica. Sin embargo, el uso directo de roca fosfórica no es recomendado por su baja solubilidad, por lo que es necesario mejorarlo. En este estudio, un grupo de bacterias diazotróficas fueron evaluadas como bacterias solubilizadoras de fosfato, productoras de compuestos indólicos y sus efectos sobre el crecimiento de plantas de maíz. Cepas de los géneros Azospirillum, Azotobacter, Rhizobium y Klebsiella fueron evaluadas cuantitativamente en la solubilización de Ca3(PO4)2 y roca fosfórica como única fuente de fósforo en medio de cultivo SRS. Adicionalmente, la actividad de la enzima fosfatasa fue cuantificada a pH 5.0, 7.0 y 8.0 usando p-nitrofenil fosfato y, la producción de compuestos indólicos fue determinada por cuantificación colorimétrica. El efecto de la inoculación de las bacterias sobre plantas de maíz fue determinado en un experimento en invernadero con un diseño completamente al azar donde los pesos secos de raíz y hojas y el contenido de fósforo fueron evaluados. Los resultados mostraron que la cepa C50 produjo 107.2 mg.L-1 de fósforo disponible después de 12 días de fermentación y que la cepa AC10 tuvo la más alta actividad fosfatasa a pH 8 con 12.7 mg de p-nitrofenol mL.h-1. Todas las cepas sintetizaron compuestos indólicos y la cepa AV5 produjo la más alta cantidad con 63.03 µg.mL-1. Estas bacterias diazotróficas incrementaron la biomasa de las plantas por encima del 39 % y de la acumulación de fósforo por el 10 %. Aquí, el uso de bacterias diazotróficas solubilizadoras de fosfato puede representar una alternativa tecnológica para los sistemas de fertilización en plantas de maíz.


Assuntos
Bactérias , Crescimento , Fósforo , Zea mays , Fertilizantes
10.
Acta biol. colomb ; 15(3): 107-120, dic. 2010.
Artigo em Espanhol | LILACS | ID: lil-635051

RESUMO

Se evaluó el efecto de las épocas climáticas (lluvia y sequía) y del estrato de la muestra (suelo rizosférico, raíces y hojas) sobre la población de los géneros Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter y Burkholderia en el Eucalipto (Eucalyptus sp.). Así mismo, se evalúo su capacidad en la producción de compuestos indólicos como promotores del crecimiento vegetal y su actividad de reducción de acetileno como indicador de la fijación biológica de nitrógeno. Los resultados no registraron diferencias estadísticas significativas en el test de Tukey (P ≤ 0.05) en la población con respecto a la época climática. Con respecto al estrato de muestra, los aislamientos tentativos de Herbaspirillum sp. y Azospirillum sp. presentaron diferencias significativas en suelo rizosférico y raíces. Se obtuvieron 44 aislamientos de los cuales se agruparon por caracterización fenotípica como: 14 presuntivos de Beijerinckia sp., 12 de Azotobacter sp., ocho de Derxia sp., cuatro de Herbarpirillum sp., cinco de Azospirillum sp., uno de Gluconacetobacter sp. y uno de Burkholderia sp. Por su alto potencial fueron seleccionados y criopreservados los aislamientos C27, C26 y C25, las cuales presentaron los mejores valores de eficiencia in vitro, superando valores de producción de las cepas de referencia utilizadas (A. chroococcum (AC1) y A. brasilense (SP7)).


The effect of climatic seasons (rainy and dry) and the stratum sample (rhizospheric soil, roots and leaves) the population of the genera Azotobacter, Beijerinckia, Derxia, Azospirillum, Herbaspirillum, Gluconacetobacter and Burkholderia in soil rhizosphere, roots and leaves of Eucalyptus (Eucalyptus sp.). It also assesses their ability to produce indoles compounds as plant growth promoters and their acetylene reduction activity as an indicator of biological fixation of nitrogen. The results showed no statistically significant differences in the Duncan test (P ≤ 0.05) in the population with respect to the climate epoch, suggesting that these bacteria are able to tolerate stress conditions by different physiological mechanisms. With respect to the stratum sample isolates attempts of Herbaspirillum sp. and Azospirillum sp. significant differences in rhizospheric soil and roots. We obtained 44 isolates of which were grouped by phenotypic characterization as 14 suspected of Beijerinckia sp., 12 Azotobacter sp., 8 Derxia sp., 4 Herbaspirillum sp., 5 Azospirillum sp., 1 Gluconacetobacter sp. and 1 Burkholderia sp. Due to their high potential were selected isolates C27, C26 and C25. These four strains present the best values of efficiency in vitro, exceeding production values of the reference strains used (A. chroococcum (AC1) and A. brasilense (SP7)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA