Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(12): 871, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222930

RESUMO

The top priority of the sustainable development goals is to improve the quality of the environment for better living. Sulphur dioxide is considered more hazardous than any other gases that pollute the environment and harm the well-being of organisms. In 2019, India alone accounted for 21% of the world's SO2 emissions. Strict action is required to reduce maximum levels of SO2 emission to the atmosphere to improve the total air quality. To reduce SO2 emissions more effectively, in this study, α-hematite was chemically activated by using 5% NaOH and C2H5OH with the help of a double bed adsorption column. The adsorbent properties of α-hematite were studied by Brunauer-Emmett-Teller isotherm, which revealed a high surface area (539 m2 g-1), and pore size (2.3125 nm) and high volume in the pore (0.0293432 cm3 mg-1). FTIR confirmed that the SO2 particulate on the surface of the adsorbent with an adsorption capacity of 95%. The operating temperature of 40-50 °C was optimal for the chemical adsorption. It was found that the inlet concentration (64 mg m-3) of SO2 decreases as the adsorption of SO2 increases. Trace SO2 was well-adsorbed by the adsorbent, which resulted in a mass transfer zone. Freundlich's adsorption spectrum was more fit for low concentrated SO2 than Langmuir isotherm. The results indicate that the environmental emission of SO2 can be reduced with chemically enhanced α-hematite.


Assuntos
Monitoramento Ambiental , Dióxido de Enxofre , Adsorção , Compostos Férricos , Hidróxido de Sódio
2.
Environ Sci Technol ; 55(22): 15542-15553, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34736317

RESUMO

The removal of CO2 from gases is an important industrial process in the transition to a low-carbon economy. The use of selective physical (co-)solvents is especially perspective in cases when the amount of CO2 is large as it enables one to lower the energy requirements for solvent regeneration. However, only a few physical solvents have found industrial application and the design of new ones can pave the way to more efficient gas treatment techniques. Experimental screening of gas solubility is a labor-intensive process, and solubility modeling is a viable strategy to reduce the number of solvents subject to experimental measurements. In this paper, a chemoinformatics-based modeling workflow was applied to build a predictive model for the solubility of CO2 and four other industrially important gases (CO, CH4, H2, and N2). A dataset containing solubilities of gases in 280 solvents was collected from literature sources and supplemented with the new data for six solvents measured in the present study. A modeling workflow based on the usage of several state-of-the-art machine learning algorithms was applied to establish quantitative structure-solubility relationships. The best models were used to perform virtual screening of the industrially produced chemicals. It enabled the identification of compounds with high predicted CO2 solubility and selectivity toward other gases. The prediction for one of the compounds, 4-methylmorpholine, was confirmed experimentally.


Assuntos
Dióxido de Carbono , Quimioinformática , Gases , Solubilidade , Solventes
3.
J Mass Spectrom ; 56(8): e4777, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34291848

RESUMO

A qualitative analysis was applied for the determination of trace compounds at the parts per trillion in volume (pptv ) level in the mass spectra of nitrogen of different qualities (5.0 and 6.0) under dry and humid conditions. This qualitative analysis enabled the classification and discovery of hundreds of new ions (e.g., [Sx ]H+ species) and artifacts such as parasitic ions and memory effects and their differentiation from real gas impurities. With this analysis, the humidity dependency of all kind of ions in the mass spectrum was determined. Apart from the inorganic artifacts previously discovered, many new organic ions were assigned as instrumental artifacts and new isobaric interferences could be elucidated. From 1140 peaks found in the mass range m/z 0-800, only 660 could be analyzed due to sufficient intensity, from which 463 corresponded to compounds. The number of peaks in nitrogen proton transfer reaction (PTR) spectra was similarly dominated by nonmetallic oxygenated organic compounds (23.5%) and hydrocarbons (24.1%) Regarding only gas impurities, hydrocarbons were the main compound class (50.2%). The highest contribution to the total ion signal for unfiltered nitrogen under dry and humid conditions was from nonmetallic oxygenated compounds. Under dry conditions, nitrogen-containing compounds exhibit the second highest contribution of 89% and 96% for nitrogen 5.0 and 6.0, respectively, whereas under humid conditions, hydrocarbons become the second dominant group with 69% and 86% for nitrogen 5.0 and 6.0, respectively. With the gathered information, a database can be built as a tool for the elucidation of instrumental and intrinsic gas matrix artifacts in PTR mass spectra and, especially in cases, where dilution with inert gases plays a significant role.

4.
J Mass Spectrom ; 54(12): 987-1002, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31758619

RESUMO

We present an effective procedure to differentiate instrumental artefacts, such as parasitic ions, memory effects, and real trace impurities contained in inert gases. Three different proton transfer reaction mass spectrometers were used in order to identify instrument-specific parasitic ions. The methodology reveals new nitrogen- and metal-containing ions that up to date have not been reported. The parasitic ion signal was dominated by [N2 ]H+ and [NH3 ]H+ rather than by the common ions NO+ and O2 + . Under dry conditions in a proton transfer reaction quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF), the ion abundances of [N2 ]H+ were elevated compared with the signals in the presence of humidity. In contrast, the [NH3 ]H+ ion did not show a clear humidity dependency. On the other hand, two PTR-TOF1000 instruments showed no significant contribution of the [N2 ]H+ ion, which supports the idea of [N2 ]H+ formation in the quadrupole interface of the PTR-QiTOF. Many new nitrogen-containing ions were identified, and three different reaction sequences showing a similar reaction mechanism were established. Additionally, several metal-containing ions, their oxides, and hydroxides were formed in the three PTR instruments. However, their relative ion abundancies were below 0.03% in all cases. Within the series of metal-containing ions, the highest contribution under dry conditions was assigned to the [Fe(OH)2 ]H+ ion. Only in one PTR-TOF1000 the Fe+ ion appeared as dominant species compared with the [Fe(OH)2 ]H+ ion. The present analysis and the resulting database can be used as a tool for the elucidation of artefacts in mass spectra and, especially in cases, where dilution with inert gases play a significant role, preventing misinterpretations.

5.
Anal Sci ; 34(4): 495-500, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643314

RESUMO

Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an in situ-synthesized metal-organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized in situ in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H2O and a 90% response time of 86 s for 200 ppbv H2O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H2O of 0.8% (n = 10) and 1.5% (n = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H2O and one-year continuous monitoring test showed the sensitivity change of <∼3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal-organic frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA