Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(11): 130686, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122157

RESUMO

Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection. To identify PB-regulated mRNA targets during T. cruzi infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with T. cruzi for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1ß was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1ß expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1ß production. Our results suggest that T. cruzi assembles host PBs to counteract antiparasitic innate immunity.

2.
J Innate Immun ; 16(1): 105-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232720

RESUMO

BACKGROUND: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY: This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES: The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.


Assuntos
Interações Hospedeiro-Patógeno , Inflamação , Receptores Depuradores Classe E , Animais , Humanos , Camundongos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Lipoproteínas LDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genética
3.
Math Biosci Eng ; 20(9): 17499-17519, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37920063

RESUMO

This study presents a novel approach for obtaining reliable models and coefficients to estimate the probability of infection caused by common human enteric viruses. The aim is to provide guidance for public health policies in disease prevention and control, by reducing uncertainty and management costs in health risk assessments. Conventional dose-response (DR) models, based on the theory elaborated by Furumoto and Mickey [1], exhibit limitations stemming from the heterogeneity of individual host susceptibilities to infection resulting from ingesting aggregate viruses. Moreover, the scarcity of well-designed viral challenge experiments contributes to significant uncertainty in these DR models. To address these issues, we conducted a review of infection models used in health risk analysis, focusing on Norovirus (NoV) GI.1, pooled Enterovirus group (EV), Poliovirus 1/SM, and Echo-12 virus via contaminated water or food. Using a mechanistic approach, we reevaluated the known DR models and coefficients for the probability of individual host infection in the mentioned viruses based on dose-infection challenge experiments. Specifically, we sought to establish a relationship between the minimum infectious dose (ID) and the ID having a 50% probability of initiating host infection in the same challenge experiment. Furthermore, we developed a new formula to estimate the degree of aggregation of GI.1 NoV at the mean infectious dose. The proposed models, based on "exact" beta-Poisson DR models, effectively predicted infection probabilities from ingestion of both disaggregated and aggregate NoV GI.1. Through a numerical evaluation, we compared the results with the maximum likelihood estimation (MLE) probability obtained from a controlled challenge trial with the NoV GI.1 virus described in the literature, demonstrating the accuracy of our approach. By addressing the indetermination of the unmeasured degree of NoV aggregation in each single infectious dose, our models reduce overestimations and uncertainties in microbial risk assessments. This improvement enhances the management of health risks associated with enteric virus infections.


Assuntos
Enterovirus , Norovirus , Vírus , Humanos , Poluição da Água , Probabilidade
4.
J Evol Biol ; 36(12): 1745-1752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658647

RESUMO

Host-associated microbiota play a fundamental role in the training and induction of different forms of immunity, including inducible as well as constitutive components. However, direct experiments analysing the relative importance of microbiota on diverse forms of evolved immune functions are missing. We addressed this gap by using experimentally evolved lines of Tribolium castaneum that either produced inducible immune memory-like responses (immune priming) or constitutively expressed basal resistance (without priming), as divergent counterstrategies against Bacillus thuringiensis infection. We altered the microbial communities present in the diet (i.e. wheat flour) of these evolved lines using UV irradiation and estimated the impact on the beetle's ability to mount a priming response versus basal resistance. Populations that had evolved immune priming lost the ability to mount a priming response upon alteration of diet microbiota. Microbiota manipulation also caused a drastic reduction in their reproductive output and post-infection longevity. In contrast, in pathogen-resistant beetles, microbiota manipulation did not affect post-infection survival or reproduction. The divergent evolution of immune responses across beetle lines was thus associated with divergent reliance on the microbiome. Whether the latter is a direct outcome of differential pathogen exposure during selection or reflects evolved immune functions remains unclear. We hope that our results will motivate further experiments to understand the mechanistic basis of these complex evolutionary associations between microbiota, host immune strategies and fitness outcomes.


Assuntos
Bacillus thuringiensis , Besouros , Microbiota , Tribolium , Animais , Farinha , Bacillus thuringiensis/fisiologia , Triticum , Tribolium/fisiologia , Dieta
5.
Mol Ecol ; 32(18): 5028-5041, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540037

RESUMO

Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.


Assuntos
Anfípodes , Parasitos , Trematódeos , Animais , Anfípodes/genética , Interações Hospedeiro-Parasita/genética , Trematódeos/genética , Fenótipo
6.
Plant Cell Environ ; 46(7): 2222-2237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929646

RESUMO

As a perennial woody plant, the rubber tree (Hevea brasiliensis) must adapt to various environmental challenges through gene expression in multiple cell types. It is still unclear how genes in this species are expressed at the cellular level and the precise mechanisms by which cells respond transcriptionally to environmental stimuli, especially in the case of pathogen infection. Here, we characterized the transcriptomes in Hevea leaves during early powdery mildew infection using single-cell RNA sequencing. We identified 10 cell types and constructed the first single-cell atlas of Hevea leaves. Distinct gene expression patterns of the cell clusters were observed under powdery mildew infection, which was especially significant in the epidermal cells. Most of the genes involved in host-pathogen interactions in epidermal cells exhibited a pattern of dramatically increased expression with increasing pseudotime. Interestingly, we found that the HbCNL2 gene, encoding a nucleotide-binding leucine-rich repeat protein, positively modulated the defence of rubber leaves against powdery mildew. Overexpression of the HbCNL2 gene triggered a typical cell death phenotype in tobacco leaves and a higher level of reactive oxygen species in the protoplasts of Hevea leaves. The HbCNL2 protein was located in the cytomembrane and nucleus, and its leucine-rich repeat domain interacted with the histidine kinase-like ATPase domain of the molecular chaperone HbHSP90 in the nucleus. Collectively, our results provide the first observation of the cellular and molecular responses of Hevea leaves to biotrophic pathogen infection and can guide the identification of disease-resistance genes in this important tree species.


Assuntos
Ascomicetos , Hevea , Hevea/genética , Hevea/metabolismo , Transcriptoma , Ascomicetos/fisiologia , Morte Celular , Folhas de Planta/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Genes (Basel) ; 14(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672966

RESUMO

GYF (glycine-tyrosine-phenylalanine)-domain-containing proteins, which were reported to participate in many aspects of biological processes in yeast and animals, are highly conserved adaptor proteins existing in almost all eukaryotes. Our previous study revealed that GYF protein MUSE11/EXA1 is involved in nucleotide-binding leucine-rich repeat (NLR) receptor-mediated defense in Arabidopsis thaliana. However, the GYF-domain encoding homologous genes are still not clear in other plants. Here, we performed genome-wide identification of GYF-domain encoding genes (GYFs) from Brassica napus and its parental species, Brassica rapa and Brassica oleracea. As a result, 26 GYFs of B. napus (BnaGYFs), 11 GYFs of B. rapa (BraGYFs), and 14 GYFs of B. oleracea (BolGYFs) together with 10 A. thaliana (AtGYFs) were identified, respectively. We, then, conducted gene structure, motif, cis-acting elements, duplication, chromosome localization, and phylogenetic analysis of these genes. Gene structure analysis indicated the diversity of the exon numbers of these genes. We found that the defense and stress responsiveness element existed in 23 genes and also identified 10 motifs in these GYF proteins. Chromosome localization exhibited a similar distribution of BnaGYFs with BraGYFs or BolGYFs in their respective genomes. The phylogenetic and gene collinearity analysis showed the evolutionary conservation of GYFs among B. napus and its parental species as well as Arabidopsis. These 61 identified GYF domain proteins can be classified into seven groups according to their sequence similarity. Expression of BnaGYFs induced by Sclerotinia sclerotiorum provided five highly upregulated genes and five highly downregulated genes, which might be candidates for further research of plant-fungal interaction in B. napus.


Assuntos
Arabidopsis , Brassica napus , Brassica , Brassica napus/genética , Brassica napus/microbiologia , Brassica/genética , Genoma de Planta , Filogenia , Arabidopsis/genética
8.
Genes (Basel) ; 13(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35886057

RESUMO

Barley is an important crop grown annually on about 55 Mha and intensively cultivated in Europe. In central and north-western Europe, spring and winter barley can be grown in similar environments which creates suitable conditions for the development of barley pathogens, including Blumeria graminis f. sp. hordei, the causal agent of powdery mildew. Apart from pesticide application, it can be controlled by inexpensive and environmentally-friendly genetic resistance. In this contribution, results of the resistance gene identification in 58 barley cultivars to powdery mildew are presented. In 56 of them their resistances were postulated and in two hybrid cultivars a recently developed method of gene identification was used. In total, 18 known resistance genes were found and several unknown genes were detected. In spring barley, a gene of durable resistance mlo is still predominant. MlVe found in winter SU Celly was the only new resistance gene recorded in barley cultivars registered in the Czech Republic in this time span. Since 2001 eight new genes of specific resistance have been identified in cultivars registered in the country and their response under field conditions is discussed, including the corresponding responses of the pathogen population due to directional selection. Different strategies for breeding spring and winter barley are recommended.


Assuntos
Hordeum , República Tcheca , Europa (Continente) , Hordeum/genética , Melhoramento Vegetal , Doenças das Plantas/genética
9.
Plants (Basel) ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685797

RESUMO

The main problems of crop gene banks comprise heterogeneity of accessions, resulting from mechanical admixtures or out-crossing during their multiplication, and especially the mislabeling of accessions. These discrepancies can adversely affect the results of many expensive research and breeding projects that are based on the use of gene bank resources. To tackle these problems, 860 single-plant progenies (SPPs) of 172 accessions of the Czech winter barley core collection were grown and tested with a set of 53 isolates representing the global virulence/avirulence diversity of powdery mildew. Seventy-one resistance phenotypes encompassed the diversity of known specific resistances and their combinations. Based on testing groups of five SPPs, 94 accessions had one phenotype found in all five SPPs (homogeneous accessions), whereas in 78 accessions (45.3%) more than one phenotype was identified (heterogeneous accessions). In three varieties, specific resistances against the whole set of isolates were detected, but due to high adaptability of the pathogen, they are not recommended for breeding resistant cultivars. Selected SPPs were integrated in the gene bank and are now a reliable source of genotypically pure seed with defined powdery mildew resistance genes that can be used by breeders and researchers. The results obtained can be used to verify authenticity of accession genotype and pedigree, particularly for older varieties for which no other original criteria are available.

10.
Biology (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34571722

RESUMO

Powdery mildew (Blumeria graminis f. sp. tritici) is a common pathogen of bread wheat (Triticum aestivum L.), and genetic resistance is an effective and environmentally friendly method to reduce its adverse impact. The introgression of novel genes from wheat progenitors and related species can increase the diversity of disease resistance and accumulation of minor genes to improve the crop's resistance durability. To accomplish these two actions, host genotypes without major resistances should be preferably used. Therefore, the main aim of this study was to carry out seedling tests to detect such resistances in a set of wheat accessions from the Czech gene bank and to group the cultivars according to their phenotype. Ear progenies of 448 selected cultivars originating from 33 countries were inoculated with three isolates of the pathogen. Twenty-eight cultivars were heterogeneous, and 110 cultivars showed resistance to at least one isolate. Fifty-nine cultivars, mostly from Northwest Europe, were resistant to all three isolates were more than three times more frequently recorded in spring than in winter cultivars. Results will facilitate a rational and practical approach preferably using the set of cultivars without major resistances for both mentioned methods of breeding wheat cultivars resistant to powdery mildew.

11.
J Genet Genomics ; 48(9): 792-802, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257044

RESUMO

Gut microbial dysbiosis has been linked to many noncommunicable diseases. However, little is known about specific gut microbiota composition and its correlated metabolites associated with molecular signatures underlying host response to infection. Here, we describe the construction of a proteomic risk score based on 20 blood proteomic biomarkers, which have recently been identified as molecular signatures predicting the progression of the COVID-19. We demonstrate that in our cohort of 990 healthy individuals without infection, this proteomic risk score is positively associated with proinflammatory cytokines mainly among older, but not younger, individuals. We further discover that a core set of gut microbiota can accurately predict the above proteomic biomarkers among 301 individuals using a machine learning model and that these gut microbiota features are highly correlated with proinflammatory cytokines in another independent set of 366 individuals. Fecal metabolomics analysis suggests potential amino acid-related pathways linking gut microbiota to host metabolism and inflammation. Overall, our multi-omics analyses suggest that gut microbiota composition and function are closely related to inflammation and molecular signatures of host response to infection among healthy individuals. These results may provide novel insights into the cross-talk between gut microbiota and host immune system.


Assuntos
Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , COVID-19/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Inflamação/genética , Proteômica/métodos
12.
Prev Vet Med ; 130: 129-36, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27435656

RESUMO

In this paper, we propose a nonlinear hierarchical model (NLHM) for analyzing longitudinal experimental infection (EI) data. The NLHM offers several improvements over commonly used alternatives such as repeated measures analysis of variance (RM-ANOVA) and the linear mixed model (LMM). It enables comparison of relevant biological properties of the course of infection including peak intensity, duration and time to peak, rather than simply comparing mean responses at each observation time. We illustrate the practical benefits of this model and the insights it yields using data from experimental infection studies on equine arteritis virus. Finally, we demonstrate via simulation studies that the NLHM substantially reduces bias and improves the power to detect differences in relevant features of the infection response between two populations. For example, to detect a 20% difference in response duration between two groups (n=15) in which the peak time and peak intensity were identical, the RM-ANOVA test had a power of just 11%, and LMM a power of just 12%. By comparison, the nonlinear model we propose had a power of 58% in the same scenario, while controlling the Type I error rate better than the other two methods.


Assuntos
Infecções/veterinária , Dinâmica não Linear , Análise de Variância , Animais , Infecções por Arterivirus/veterinária , Viés , Simulação por Computador , Equartevirus , Cavalos , Infecções/fisiopatologia , Estudos Longitudinais , Modelos Estatísticos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Vacinas Virais/administração & dosagem
13.
Fungal Biol ; 120(6-7): 819-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27268242

RESUMO

Ophiocordyceps sinensis, also referred to as the Chinese caterpillar fungus, is a rare entomopathogenic fungus found in the Qinghai-Tibetan Plateau that is used as a traditional Chinese medicine. O. sinensis parasitizes the larvae of the ghost moth Thitarodes. Characterization of the transcriptome of O. sinensis before and after host infection may provide novel insight into the process by which the fungus interacts with Thitarodes and may help researchers understand how to sustain this valuable resource. In this study, we performed RNA-sequencing (RNA-seq) using Illumina HiSeqTM 2000 technology to generate gene expression profiles of two developmental stages of O. sinensis. Thread-like hyphae before infection and yeast-like hyphal bodies after infection of host larvae were collected for transcriptome analysis. We found that 1640 genes were differentially expressed (q-value < 0.05), of which 818 were upregulated (49.878 %) and 822 were downregulated (50.122 %). Gene ontology (GO) analysis revealed that the differentially expressed genes (DEGs) were especially enriched in terms associated with Biological Process and Molecular Function. Several genes encoding transporter and permease proteins, three glycoside hydrolases, two mycotoxin-related proteins, an antigen protein, and an allergen were identified as being significantly up- or downregulated. Collectively, our findings provide a novel resource for understanding O. sinensis during two critical developmental stages, and offer the opportunity to further investigate the functional mechanisms underlying these stage-specific molecular differences.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Hypocreales/crescimento & desenvolvimento , Hypocreales/genética , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/microbiologia , Animais , Larva/microbiologia , Análise de Sequência de RNA
14.
Plant Dis ; 91(7): 814-821, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30780390

RESUMO

Spot blotch, caused by Bipolaris sorokiniana, is a damaging disease of barley in Canada, especially in the prairie region (Manitoba, Saskatchewan, and Alberta) where most of Canadian crops are produced. Considerable interaction between isolates of the pathogen and barley genotypes necessitates the evaluation of the virulence diversity in the B. sorokiniana population in order to deploy effective resistance against the pathogen. The virulence diversity of 127 B. sorokiniana isolates from Canada and other countries was evaluated on 12 barley genotypes. Different virulence patterns were detected across B. sorokiniana isolates and eight virulence groups were identified using qualitative analysis of the virulence data. Results indicate broader virulence diversity in the pathogen population in the eastern prairie region of Canada, especially in Manitoba, compared with that previously reported. One group of isolates collected from Manitoba displayed a virulence pattern which had not been reported previously. This group was moderately virulent on most differential lines, including American six-rowed barley genotypes considered to possess durable resistance against B. sorokiniana. Although the classical method of pathotype identification can be exploited to analyze interactions in the barley-B. sorokiniana pathosystem, the continuous range of infection phenotypes found suggests that a quantitative analysis of the complex interactions occurring may be warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA