Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
MAbs ; 16(1): 2365891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889315

RESUMO

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Assuntos
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Cadeias beta de Integrinas/imunologia , Cadeias beta de Integrinas/química , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Integrina alfaV/imunologia , Integrina alfaV/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Ligação Proteica , Especificidade de Anticorpos
2.
Methods Mol Biol ; 2747: 243-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038945

RESUMO

Targeting dysregulated protease expression and/or abnormal substrate proteolysis, highly selective inhibition of pathogenic proteases by monoclonal antibodies (mAbs) presents an attractive therapeutic approach for the treatment of diseases including cancer. Herein, we report a functional selection method for protease inhibitory mAbs by periplasmic co-expression of three recombinant proteins-a protease of interest, an antibody Fab library, and a modified ß-lactamase TEM-1. We validate this approach by isolation of highly selective and potent mAbs inhibiting human matrix metalloproteinase 9 (MMP9).


Assuntos
Inibidores de Metaloproteinases de Matriz , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Anticorpos Monoclonais , Endopeptidases/metabolismo , Proteólise
3.
Mol Ther Nucleic Acids ; 34: 102043, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37920545

RESUMO

Development of factor VIII (FVIII) inhibitors is a serious complication in the treatment of hemophilia A (HemA) patients. In clinical trials, anti-CD3 antibody therapy effectively modulates the immune response of allograft rejection or autoimmune diseases without eliciting major adverse effects. In this study, we delivered mRNA-encapsulated lipid nanoparticles (LNPs) encoding therapeutic anti-CD3 antibody (αCD3 LNPs) to overcome the anti-FVIII immune responses in HemA mice. It was found that αCD3 LNPs encoding the single-chain antibodies (Fc-scFv) can efficiently deplete CD3+ and CD4+ effector T cells, whereas αCD3 LNPs encoding double-chain antibodies cannot. Concomitantly, mice treated with αCD3 (Fc-scFv) LNPs showed an increase in the CD4+CD25+Foxp3+ regulatory T cell percentages, which modulated the anti-FVIII immune responses. All T cells returned to normal levels within 2 months. HemA mice treated with αCD3 LNPs prior to hydrodynamic injection of liver-specific FVIII plasmids achieved persistent FVIII gene expression without formation of FVIII inhibitors. Furthermore, transgene expression was increased and persistent following secondary plasmid challenge, indicating induction of long-term tolerance to FVIII. Moreover, the treated mice maintained their immune competence against other antigens. In conclusion, our study established a potential new strategy to induce long-term antigen-specific tolerance using an αCD3 LNP formulation.

4.
Ann Blood ; 82023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39148951

RESUMO

Background and Objective: Thrombotic thrombocytopenic purpura (TTP) is a potentially fatal blood disorder, resulting from severe deficiency of plasma ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats, 13) activity. ADAMTS13 is crucial for normal hemostasis through proteolytic cleavage of ultra large von Willebrand factor (VWF). Since the discovery of ADAMTS13 in 2001, several animal models for TTP have been established. In this narrative review, we summarize the creation and characterization of the established animal models for TTP to date. Methods: We performed a literature search through PubMed from 1969 to 2022 using free text: TTP and animal model. We found 67 peer-reviewed articles but only 33 articles were included for review and 34 articles that did not discuss TTP were excluded. Key Content and Findings: There were genetically modified or antibody-mediated TTP models being established and fully characterized in mouse, rat, baboon, and zebrafish. However, we are still in urgent need of a true autoimmune TTP animal model. Conclusions: These animal models allowed researchers to further evaluate the contribution of various potential environmental factors and/or genetic modifiers to the pathogenesis, progression, and outcome of TTP; and to help assess the efficacy and safety of novel approaches for prevention and treatment of both hereditary and acquired TTP.

5.
Diagnostics (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36010162

RESUMO

Background: The SARS-CoV-2 pandemic was particularly devastating for elderly people, and the underlying mechanisms of the disease are still poorly understood. In this study, we investigated fusion inhibitory antibodies (fiAbs) in elderly and younger COVID-19 patients and analyzed predictive factors for their occurrence. Methods: Data and samples were collected in two cohorts of hospitalized patients. A fusion assay of SARS-CoV-2 spike-expressing cells with ACE2-expressing cells was used to quantify fiAbs in the serum of patients. Results: A total of 108 patients (52 elderly (mean age 85 ± 7 years); 56 young (mean age 52 ± 10 years)) were studied. The concentrations of fiAbs were lower in geriatric patients, as evidenced at high serum dilutions (1/512). The association between fiAbs and anti-Spike Ig levels was weak (correlation coefficient < 0.3), but statistically significant. Variables associated with fusion were the delay between the onset of symptoms and testing (HR = −2.69; p < 0.001), clinical frailty scale (HR = 4.71; p = 0.035), and WHO severity score (HR = −6.01, p = 0.048). Conclusions: Elderly patients had lower fiAbs levels after COVID-19 infection. The decreased fiAbs levels were associated with frailty.

6.
Bioorg Med Chem ; 42: 116219, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077853

RESUMO

Covalent target modulation with small molecules has been emerging as a promising strategy for drug discovery. However, covalent inhibitory antibody remains unexplored due to the lack of efficient strategies to engineer antibody with desired bioactivity. Herein, we developed an intracellular selection method to generate covalent inhibitory antibody against human rhinovirus 14 (HRV14) 3C protease through unnatural amino acid mutagenesis along the heavy chain complementarity-determining region 3 (CDR-H3). A library of antibody mutants was thus constructed and screened in vivo through co-expression with the target protease. Using this screening strategy, six covalent antibodies with proximity-enabled bioactivity were identified, which were shown to covalently target HRV14-3C protease with high inhibitory potency and exquisite selectivity. Compared to structure-based rational design, this library-based screening method provides a simple and efficient way for the discovery and engineering of covalent antibody for enzyme inhibition.


Assuntos
Proteases Virais 3C/antagonistas & inibidores , Anticorpos/farmacologia , Regiões Determinantes de Complementaridade/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Rhinovirus/enzimologia , Proteases Virais 3C/metabolismo , Anticorpos/química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
7.
J Biochem ; 169(5): 555-564, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-33377147

RESUMO

The large, secreted glycoprotein reelin regulates embryonic brain development as well as adult brain functions. Although reelin binds to its receptors via its central part, the N-terminal region directs multimer formation and is critical for efficient signal transduction. In fact, the inhibitory antibody CR-50 interacts with the N-terminal region and prevents higher-order multimerization and signalling. Reelin is a multidomain protein in which the central part is composed of eight characteristic repeats, named reelin repeats, each of which is further divided by insertion of a epidermal growth factor (EGF) module into two subrepeats. In contrast, the N-terminal region shows unique 'irregular' domain architecture since it comprises three consecutive subrepeats without the intervening EGF module. Here, we determined the crystal structure of the murine reelin fragment named RX-R1 including the irregular region and the first reelin repeat at 2.0-Å resolution. The overall structure of RX-R1 has a branched Y-shaped form. Interestingly, two incomplete subrepeats cooperatively form one entire subrepeat structure, though an additional subrepeat is inserted between them. We further reveal that Arg335 of RX-R1 is crucial for binding CR-50. A possible self-association mechanism via the N-terminal region is proposed based on our results.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Proteínas da Matriz Extracelular/química , Proteínas do Tecido Nervoso/química , Multimerização Proteica , Serina Endopeptidases/química , Animais , Anticorpos Monoclonais/química , Moléculas de Adesão Celular Neuronais/genética , Cristalografia por Raios X , Proteínas da Matriz Extracelular/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Domínios Proteicos , Proteína Reelina , Sequências Repetitivas de Aminoácidos , Serina Endopeptidases/genética
8.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140427, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283249

RESUMO

We show that the antibody, clone mAb(D38C6), of the α isoform of the catalytic subunit of PKA (PKAcα) inhibits the kinase-catalyzed phosphorylation with low-nanomolar inhibitory potency (Ki = 2.4 nM). This property of the antibody was established by its capacity to displace a synthetic small-molecule active site-binding (orthosteric) photoluminescent ARC-Lum(Fluo) probe from the complex with PKAcα. Likely, the competitiveness of association of the two binders with the protein is coming from two excluding conformations of PKAcα to which the binders bind. mAb(D38C6) possesses a linear peptide epitope and it binds to the disordered C-tail of unliganded inactive conformer of PKAcα. ARC-Lum(Fluo) probes bind to the ordered and active conformation of PKAcα with Phe327 residue from the C-tail taking part in the formation of the active core. Consecutive application of these competitive PKAcα binders was used to develop an immunoassay allowing the determination of PKAcα concentration in complex biological solutions. At first, PKAcα was captured from the solution by the isoform-specific antibody and thereafter a high-affinity ARC-Lum(Fluo) probe was used to displace PKAcα from the binary complex. The developed immunoassay could be used for quantification of small amounts (starting from 93 pg, 2.3 fmol) of PKAcα in cell lysates.


Assuntos
Anticorpos Monoclonais/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/análise , Imunoensaio , Sondas Moleculares/química , Peptídeos/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Especificidade de Anticorpos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Células HeLa , Humanos , Cinética , Medições Luminescentes , Modelos Moleculares , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
9.
Molecules ; 24(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216704

RESUMO

The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Desenho de Fármacos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Metaloproteinases da Matriz/classificação , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
10.
Protein Sci ; 28(3): 643-653, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30592555

RESUMO

Playing pivotal roles in tumor growth and metastasis, matrix metalloproteinase-14 (MMP-14) is an important cancer target. Potent inhibitory Fab 3A2 with therapy-desired high selectivity has been isolated from a synthetic antibody library carrying long CDR-H3s. However, like many standard mechanism protease inhibitors, Fab 3A2 can be cleaved by high concentrations of MMP-14 after extended incubation at acidic pH. Edman sequencing of generated 3A2 fragments indicated that cleavage occurred within its CDR-H3 between residues N100h (P1) and L100i (P1'). To improve proteolytic stability of 3A2, three positions adjacent to its cleavage site (P1, P1', and P3') were subjected to site-saturation mutagenesis (SSM). Mutations at P1' (L100i) resulted in loss of inhibition function, while screening of 3A2 Fab mutants at P1 (N100h) or P3' (A100k) positions identified four clones exhibiting improvements in both stability and inhibition potency. The majority of these mutants with improved stability were substitutions to either hydrophobic (Lue, Trp) or basic residues (Arg, Lys, His). Combinations of these beneficial mutations resulted in a double mutant N100hR/A100kR, which prolonged half-life twofold with an inhibition potency KI of 6.6 nM. Enzyme kinetics and competitive ELISA suggested that N100hR/A100kR was a competitive inhibitor overlapping its binding epitope with that of nTIMP-2. This study demonstrated that site-directed mutagenesis at or near the cleavage position reduced proteolytic liability of standard mechanism protease inhibitors especially inhibitory antibodies.


Assuntos
Anticorpos/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Anticorpos/genética , Anticorpos/metabolismo , Humanos , Inibidores de Metaloproteinases de Matriz/metabolismo , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , Estabilidade Proteica , Proteólise
11.
Antib Ther ; 1(2): 55-63, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30406213

RESUMO

Background: Proteases are one of the largest pharmaceutical targets for drug developments. Their dysregulations result in a wide variety of diseases. Because proteolytic networks usually consist of protease family members that share high structural and catalytic homology, distinguishing them using small molecule inhibitors is often challenging. To achieve specific inhibition, this study described a novel approach for the generation of protease inhibitory antibodies. As a proof of concept, we aimed to convert a matrix metalloproteinase (MMP)-14 specific inhibitor to MMP-9 specific inhibitory antibodies with high selectivity. Methods: An error-prone single-chain Fv (scFv) library of an MMP-14 inhibitor 3A2 was generated for yeast surface display. A dual-color competitive FACS was developed for selection on MMP-9 catalytic domain (cdMMP-9) and counter-selection on cdMMP-14 simultaneously, which were fused/conjugated with different fluorophores. Isolated MMP-9 inhibitory scFvs were biochemically characterized by inhibition assays on MMP-2/-9/-12/-14, proteolytic stability tests, inhibition mode determination, competitive ELISA with TIMP-2 (a native inhibitor of MMPs), and paratope mutagenesis assays. Results: We converted an MMP-14 specific inhibitor 3A2 into a panel of MMP-9 specific inhibitory antibodies with dramatic selectivity shifts of 690-4,500 folds. Isolated scFvs inhibited cdMMP-9 at nM potency with high selectivity over MMP-2/-12/-14 and exhibited decent proteolytic stability. Biochemical characterizations revealed that these scFvs were competitive inhibitors binding to cdMMP-9 near its reaction cleft via their CDR-H3s. Conclusions: This study developed a novel approach able to convert the selectivity of inhibitory antibodies among closely related protease family members. This methodology can be directly applied for mAbs inhibiting many proteases of biomedical importance.

12.
Biotechnol Bioeng ; 115(11): 2673-2682, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102763

RESUMO

Targeting effectual epitopes is essential for therapeutic antibodies to accomplish their desired biological functions. This study developed a competitive dual color fluorescence-activated cell sorting (FACS) to maturate a matrix metalloprotease 14 (MMP-14) inhibitory antibody. Epitope-specific screening was achieved by selection on MMP-14 during competition with N-terminal domain of tissue inhibitor of metalloproteinase-2 (TIMP-2) (nTIMP-2), a native inhibitor of MMP-14 binding strongly to its catalytic cleft. 3A2 variants with high potency, selectivity, and improved affinity and proteolytic stability were isolated from a random mutagenesis library. Binding kinetics indicated that the affinity improvements were mainly from slower dissociation rates. In vitro degradation tests suggested the isolated variants had half lives 6-11-fold longer than the wt. Inhibition kinetics suggested they were competitive inhibitors which showed excellent selectivity toward MMP-14 over highly homologous MMP-9. Alanine scanning revealed that they bound to the vicinity of MMP-14 catalytic cleft especially residues F204 and F260, suggesting that the desired epitope was maintained during maturation. When converted to immunoglobulin G, B3 showed 5.0 nM binding affinity and 6.5 nM inhibition potency with in vivo half-life of 4.6 days in mice. In addition to protease inhibitory antibodies, the competitive FACS described here can be applied for discovery and engineering biosimilars, and in general for other circumstances where epitope-specific modulation is needed.


Assuntos
Anticorpos/isolamento & purificação , Afinidade de Anticorpos , Avaliação Pré-Clínica de Medicamentos/métodos , Epitopos/imunologia , Fatores Imunológicos/isolamento & purificação , Metaloproteinase 14 da Matriz/imunologia , Inibidores de Metaloproteinases de Matriz/isolamento & purificação , Animais , Anticorpos/imunologia , Sítios de Ligação , Citometria de Fluxo/métodos , Meia-Vida , Fatores Imunológicos/imunologia , Cinética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Mutagênese , Ligação Proteica
13.
Int J Biol Sci ; 14(4): 461-470, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725267

RESUMO

Human vasorin (VASN) as a type I transmembrane protein, is a potential biomarker of hepatocellular carcinoma, which could expedite HepG2 cell proliferation and migration significantly in vitro. The ectodomain of VASN was proteolytically released to generate soluble VASN (sVASN), which was validated to be the active form. Among several monoclonal antibodies produced against sVASN, the clone V21 was found to bind with the recombinant human sVASN (rhsVASN) with the highest affinity and specificity, and also have inhibitory effects on proliferation and migration of HepG2 cells. Hence the phage-displayed peptide library was screened against the antibody V21. The positive phage clones were isolated and sequenced, and one unique consensus motifs was obtained. The result of sequence alignment showed that the conserved motif had similarity to VASN(Cys432-Cys441), embedded in the epidermal growth factor (EGF)-like domain. The synthetic mimotope peptide V21P1 and V21P2 were confirmed to bind with V21 and could compete with rhsVASN in ELISA assay. And they could also almost completely reverse the inhibitory effect of V21 on HepG2 migration and proliferation. Furthermore, the antibodies produced against V21P1 were able to bind not only with the peptide V21P1, but also with rhsVASN and the natural VASN from HepG2 cell. Our results showed that V21 seemed to be a functional antibody. The mimotopes toward V21 might mimic the functional domain of VASN, which would be helpful to exploit VASN functions and act as a candidate target for developing therapeutic antibodies against VASN.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Anticorpos Monoclonais , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Clonagem Molecular , Sequência Conservada , Ensaio de Imunoadsorção Enzimática , Células Hep G2 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios Proteicos , Alinhamento de Sequência
14.
Med Microbiol Immunol ; 207(2): 151-166, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397427

RESUMO

Malaria vaccine development has been confronted with various challenges such as poor immunogenicity of malaria vaccine candidate antigens, which is considered as the main challenge. However, this problem can be managed using appropriate formulations of antigens and adjuvants. Poly(I:C) is a potent Th1 inducer and a human compatible adjuvant capable of stimulating both B- and T-cell immunity. Plasmodium falciparum merozoite surface protein 142 (PfMSP-142) is a promising vaccine candidate for blood stage of malaria that has faced several difficulties in clinical trials, mainly due to improper adjuvants. Therefore, in the current study, poly(I:C), as a potent Th1 inducer adjuvant, was evaluated to improve the immunogenicity of recombinant PfMSP-142, when compared to CFA/IFA, as reference adjuvant. Poly(I:C) produced high level and titers of anti-PfMSP-142 IgG antibodies in which was comparable to CFA/IFA adjuvant. In addition, PfMSP-142 formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-4 (23.9) and IgG2a/IgG1 (3.77) with more persistent, higher avidity, and titer of IgG2a relative to CFA/IFA, indicating a potent Th1 immune response. Poly(I:C) could also help to induce anti-PfMSP-142 antibodies with higher growth-inhibitory activity than CFA/IFA. Altogether, the results of the current study demonstrated that poly(I:C) is a potent adjuvant that can be appropriate for being used in PfMSP-142-based vaccine formulations.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , Poli I-C/administração & dosagem , Células Th1/imunologia , Animais , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-4/metabolismo , Vacinas Antimaláricas/administração & dosagem , Proteína 1 de Superfície de Merozoito/administração & dosagem , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
15.
Methods Mol Biol ; 1731: 307-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29318563

RESUMO

Inhibiting individual MMPs of biomedical importance with high selectivity is critical for both fundamental research and therapy development. Here we describe the methods for discovery of inhibitory monoclonal antibodies from synthetic human antibody phage display libraries carrying convex paratopes encoded by long complementarity-determining region (CDR)-H3 segments. We demonstrate the application of this technique for isolation of highly specific and potent antibody inhibitors of human MMP-14.


Assuntos
Anticorpos Monoclonais/imunologia , Descoberta de Drogas/métodos , Metaloproteinase 14 da Matriz/imunologia , Inibidores de Metaloproteinases de Matriz/imunologia , Biblioteca de Peptídeos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Sítios de Ligação de Anticorpos/imunologia , Regiões Determinantes de Complementaridade/imunologia , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia
16.
Oncotarget ; 8(35): 58372-58385, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938563

RESUMO

Matrix metalloproteinase-14 (MMP-14) is a clinically relevant target in metastatic cancers due to its role in tumor progression and metastasis. Since active MMP-14 is localized on the cell surface, it is amenable to antibody-mediated blockade in cancer, and here we describe our efforts to develop novel inhibitory anti-MMP-14 antibodies. A phage-displayed synthetic humanized Fab library was screened against the extracellular domain of MMP-14 and a panel of MMP14-specific Fabs were identified. A lead antibody that inhibits the catalytic domain of MMP-14 (Fab 3369) was identified and treatment of MDA-MB-231 breast cancer cells with Fab 3369 led to significant loss of extracellular matrix degradation and cell invasion abilities. In mammary orthotopic tumor xenograft assays, MMP-14 blockade by IgG 3369 limited tumor growth and metastasis. Analysis of tumor tissue sections revealed that MMP-14 blockade limited tumor neoangiogenesis and hypoxia. Similar effects of MMP-14 blockade in syngeneic 4T1 mammary tumors were observed, along with increased detection of cytotoxic immune cell markers. In conclusion, we show that immunotherapies targeting MMP-14 can limit immune suppression, tumor progression, and metastasis in triple-negative breast cancer.

17.
Eur J Pharm Sci ; 110: 62-69, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554668

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumor amongst all human cancers due to late diagnosis and resistant to treatment with chemotherapy and radiation. Preclinical and clinical studies have revealed that ErbB family for example epidermal growth factor receptor (EGFR) is a validated molecular target for pancreatic cancer prevention and therapy. The ErbB signaling cascade is regulated by a member of the ADAM (a disintegrin and metalloprotease) family, namely ADAM17, by enzymatic cleavage of precursor ligands into soluble cytokines and growth factors. Mouse genetic studies have demonstrated that ADAM17 is required for PDAC development. In this study, we evaluated the anti-tumor effects of A9(B8) IgG - the first specific 'human and mouse cross-reactive' ADAM17 inhibitory antibody on pancreatic malignant transformation. We found that inhibition of ADAM17 with A9(B8) IgG efficiently suppressed the shedding of ADAM17 substrates both in vivo and in vitro. Furthermore, we demonstrated that administration of A9(B8) IgG significantly suppressed motility in human pancreatic cancer cells and also significantly delayed tumorigenesis in the Pdx1Cre;KrasG12D;Trp53fl/+PDAC mouse model. Inhibition of ADAM17 with A9(B8) IgG particularly affected the progression of pre-invasive pancreatic lesions to advanced PDAC in mice. Taken together, the preclinical data presented here will provide a starting point for clinical applications of ADAM17 targeted therapy.


Assuntos
Proteína ADAM17/imunologia , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Anticorpos/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
18.
Elife ; 62017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195038

RESUMO

Invasion of erythrocytes by Plasmodial merozoites is a composite process involving the interplay of several proteins. Among them, the Plasmodium falciparum Cysteine-Rich Protective Antigen (PfCyRPA) is a crucial component of a ternary complex, including Reticulocyte binding-like Homologous protein 5 (PfRH5) and the RH5-interacting protein (PfRipr), essential for erythrocyte invasion. Here, we present the crystal structures of PfCyRPA and its complex with the antigen-binding fragment of a parasite growth inhibitory antibody. PfCyRPA adopts a 6-bladed ß-propeller structure with similarity to the classic sialidase fold, but it has no sialidase activity and fulfills a purely non-enzymatic function. Characterization of the epitope recognized by protective antibodies may facilitate design of peptidomimetics to focus vaccine responses on protective epitopes. Both in vitro and in vivo anti-PfCyRPA and anti-PfRH5 antibodies showed more potent parasite growth inhibitory activity in combination than on their own, supporting a combined delivery of PfCyRPA and PfRH5 in vaccines.


Assuntos
Anticorpos Antiprotozoários/química , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Vacinas Antimaláricas/química , Vacinas Antimaláricas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Biotechnol Bioeng ; 114(6): 1140-1150, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28090632

RESUMO

Matrix metalloproteinase (MMP)-14 is an important target for cancer treatment due to its critical roles in tumor invasion and metastasis. Previous failures of all compound-based broad-spectrum MMP inhibitors in clinical trials suggest that selectivity is the key for a successful therapy. With inherent high specificity, monoclonal antibodies (mAbs) therefore arise as attractive inhibitors able to target the particular MMP of interest. As a routine screening method, enzyme-linked immunosorbent assays (ELISA) have been applied to panned phage libraries for the isolation of mAbs inhibiting MMP-14. However, because of suboptimal growth conditions and insufficient antibody expression associated with monoclonal ELISA, a considerable number of potentially inhibitory clones might not be identified. Taking advantage of next-generation sequencing (NGS), we monitored enrichment profiles of millions of antibody clones along three rounds of phage panning, and identified 20 Fab inhibitors of MMP-14 with inhibition IC50 values of 10-4,000 nM. Among these inhibitory Fabs, 15 were not found by monoclonal phage ELISA. Particularly, Fab R2C7 exhibited an inhibition potency of 100 nM with an excellent selectivity to MMP-14 over MMP-9. Inhibition kinetics and epitope mapping suggested that as a competitive inhibitor, R2C7 directly bound to the vicinity of the MMP-14 catalytic site. This study demonstrates that deep sequencing is a powerful tool to facilitate the systematic discovery of mAbs with protease inhibition functions. Biotechnol. Bioeng. 2017;114: 1140-1150. © 2017 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Fragmentos Fab das Imunoglobulinas/química , Metaloproteinase 14 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Análise de Sequência de Proteína/métodos , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Mapeamento de Epitopos/métodos , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Metaloproteinase 14 da Matriz/imunologia , Ligação Proteica
20.
Protein Eng Des Sel ; 30(2): 113-118, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27986919

RESUMO

Matrix metalloproteinase-14 (MMP-14) plays important roles in cancer metastasis, and the failures of broad-spectrum MMP compound inhibitors in clinical trials suggested selectivity is critical. By grafting an MMP-14 specific inhibition motif into complementarity determining region (CDR)-H3 of antibody scaffolds and optimizing other CDRs and the sequences that flank CDR-H3, we isolated a Fab 1F8 showing a binding affinity of 8.3 nM with >1000-fold enhancement on inhibition potency compared to the peptide inhibitor. Yeast surface display and fluorescence-activated cell sorting results indicated that 1F8 was highly selective to MMP-14 and competed with TIMP-2 on binding to the catalytic domain of MMP-14. Converting a low-affinity peptide inhibitor into a high potency antibody, the described methods can be used to develop other inhibitory antibodies of therapeutic significance.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Metaloproteinase 14 da Matriz/imunologia , Engenharia de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Domínio Catalítico , Linhagem Celular , Metaloproteinase 14 da Matriz/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA