Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39073901

RESUMO

N-linked glycoproteins are rich in seminal plasma, playing essential roles in supporting sperm function and fertilization process. The alteration of seminal plasma glycans and its correspond glycoproteins may lead to sperm dysfunction and even infertility. In present study, an integrative analysis of glycoproteomic and proteomic was performed to investigate the changes of site-specific glycans and glycoptoteins in seminal plasma of asthenozoospermia. By large scale profiling and quantifying 5,018 intact N-glycopeptides in seminal plasma, we identified 92 intact N-glycopeptides from 34 glycoproteins changed in asthenozoospermia. Especially, fucosylated glycans containing lewis x, lewis y and core fucosylation were significantly up-regulated in asthenozoospermia compared to healthy donors. The up-regulation of fucosylated glycans in seminal plasma may interfere sperm surface compositions and regulation of immune response, which subsequently disrupts sperm function. Three differentiated expression of seminal vesicle-specific glycoproteins (fibronectin, seminogelin-2, and glycodelin) were also detected with fucosylation alteration in seminal plasma of asthenozoospermia. The interpretation of the altered site-specific glycan structures provides data for the diagnosis and etiology analysis of male infertility, as well as providing new insights into the potential therapeutic targets for male infertility.


Assuntos
Astenozoospermia , Fucose , Sêmen , Humanos , Masculino , Astenozoospermia/metabolismo , Sêmen/metabolismo , Sêmen/química , Fucose/metabolismo , Glicoproteínas/metabolismo , Proteômica , Adulto , Regulação para Cima , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosilação , Glicopeptídeos/metabolismo , Glicopeptídeos/análise
2.
Adv Sci (Weinh) ; 11(9): e2306955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084450

RESUMO

The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.


Assuntos
Neoplasias Gástricas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Neoplasias Gástricas/diagnóstico , Glicosilação , Biomarcadores , Polissacarídeos/química
3.
Arthritis Res Ther ; 25(1): 102, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308935

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of aging people. Investigation of abnormal glycosylation is essential for the understanding of pathological mechanisms of OA. METHODS: The total protein was isolated from OA (n = 13) and control (n = 11) cartilages. Subsequently, glycosylation alterations of glycoproteins in OA cartilage were investigated by lectin microarrays and intact glycopeptides analysis. Finally, the expression of glycosyltransferases involved in the synthesis of altered glycosylation was assessed by qPCR and GEO database. RESULTS: Our findings revealed that several glycopatterns, such as α-1,3/6 fucosylation and high-mannose type of N-glycans were altered in OA cartilages. Notably, over 27% of identified glycopeptides (109 glycopeptides derived from 47 glycoproteins mainly located in the extracellular region) disappeared or decreased in OA cartilages, which is related to the cartilage matrix degradation. Interestingly, the microheterogeneity of N-glycans on fibronectin and aggrecan core protein was observed in OA cartilage. Our results combined with GEO data indicated that the pro-inflammatory cytokines altered the expression of glycosyltransferases (ALG3, ALG5, MGAT4C, and MGAT5) which may contribute to the alterations in glycosylation. CONCLUSION: Our study revealed the abnormal glycopatterns and heterogeneities of site-specific glycosylation associated with OA. To our knowledge, it is the first time that the heterogeneity of site-specific N-glycans was reported in OA cartilage. The results of gene expression analysis suggested that the expression of glycosyltransferases was impacted by pro-inflammatory cytokines, which may facilitate the degradation of protein and accelerate the process of OA. Our findings provide valuable information for the understanding of molecular mechanisms in the pathogenesis of OA.


Assuntos
Cartilagem , Glicômica , Glicosilação , Osteoartrite , Humanos , Glicômica/métodos , Glicoproteínas , Cartilagem/metabolismo , Citocinas
4.
Anal Bioanal Chem ; 415(18): 3727-3738, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811677

RESUMO

This trends article provides an overview of the state of the art in the analysis of intact glycopeptides by proteomics technologies based on LC-MS analysis. A brief description of the main techniques used at the different steps of the analytical workflow is provided, giving special attention to the most recent developments. The topics discussed include the need for dedicated sample preparation for intact glycopeptide purification from complex biological matrices. This section covers the common approaches with a special description of new materials and innovative reversible chemical derivatization strategies, specifically devised for intact glycopeptide analysis or dual enrichment of glycosylation and other post-translational modifications. The approaches are described for the characterization of intact glycopeptide structures by LC-MS and data analysis by bioinformatics for spectra annotation. The last section covers the open challenges in the field of intact glycopeptide analysis. These challenges include the need of a detailed description of the glycopeptide isomerism, the issues with quantitative analysis, and the lack of analytical methods for the large-scale characterization of glycosylation types that remain poorly characterized, such as C-mannosylation and tyrosine O-glycosylation. This bird's-eye view article provides both a state of the art in the field of intact glycopeptide analysis and open challenges to prompt future research on the topic.


Assuntos
Glicopeptídeos , Processamento de Proteína Pós-Traducional , Cromatografia Líquida/métodos , Glicopeptídeos/análise , Glicosilação , Espectrometria de Massas
5.
Cells ; 11(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139350

RESUMO

STT3A and STT3B are the main catalytic subunits of the oligosaccharyltransferase complex (OST-A and OST-B in mammalian cells), which primarily mediate cotranslational and post-translocational N-linked glycosylation, respectively. To determine the specificity of STT3A and STT3B, we performed proteomic and glycoproteomic analyses in the gene knock-out (KO) and wild-type HEK293 cells. In total, 3961 proteins, 4265 unique N-linked intact glycopeptides and 629 glycosites representing 349 glycoproteins were identified from all these cells. Deletion of the STT3A gene had a greater impact on the protein expression than deletion of STT3B, especially on glycoproteins. In addition, total mannosylated N-glycans were reduced and fucosylated N-glycans were increased in STT3A-KO cells, which were caused by the differential expression of glycan-related enzymes. Interestingly, hyperglycosylated proteins were identified in KO cells, and the hyperglycosylation of ENPL was caused by the endoplasmic reticulum (ER) stress due to the STT3A deletion. Furthermore, the increased expression of the ATF6 and PERK indicated that the unfolded protein response also happened in STT3A-KO cells. Overall, the specificity of STT3A and STT3B revealed that defects in the OST subunit not only broadly affect N-linked glycosylation of the protein but also affect protein expression.


Assuntos
Hexosiltransferases , Proteínas de Membrana , Glicopeptídeos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Células HEK293 , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Polissacarídeos , Proteoma/metabolismo , Proteômica
6.
J Proteome Res ; 21(7): 1664-1674, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35616904

RESUMO

N-Linked glycoproteins are rich in seminal plasma, playing various essential roles in supporting sperm function and the fertilization process. However, the detailed information on these glycoproteins, particularly site-specific glycan structures, is still limited. In this study, a precision site-specific N-glycoproteome map of human seminal plasma was established by employing the site-specific glycoproteomic approach and a recently developed glycan structure interpretation software, StrucGP. A total of 9567 unique glycopeptides identified in human seminal plasma were composed of 773 N-linked glycan structures and 1019 N-glycosites from 620 glycoproteins. These glycans were comprised of four types of core structures and 13 branch structures. The majority of identified glycoproteins functioned in response to stimulus and immunity. As we reported in human spermatozoa, heavy fucosylation (fucose residues ≥6 per glycan) was also detected on seminal plasma glycoproteins such as clusterin and galectin-3-binding protein, which were involved in the immune response of biological processes and reactome pathways. Comparison of site-specific glycans between seminal plasma and spermatozoa revealed more complicated glycan structures in seminal plasma than in spermatozoa, even on their shared glycoproteins. These present data will be greatly beneficial for the in-depth structural and functional study of glycosylation in the male reproduction system.


Assuntos
Polissacarídeos , Sêmen , Glicopeptídeos/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Polissacarídeos/química , Sêmen/metabolismo
7.
Mol Cell Proteomics ; 21(4): 100214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183770

RESUMO

Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm-egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility.


Assuntos
Reação Acrossômica , Espermatozoides , Acrossomo/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Proteômica , Capacitação Espermática , Espermatozoides/metabolismo
8.
Front Chem ; 9: 755238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778211

RESUMO

The α1,6-fucosyltransferase (encoded by FUT8 gene) is the key enzyme transferring fucose to the innermost GlcNAc residue on an N-glycan through an α-1,6 linkage in the mammalian cells. The presence of core fucose on antibody Fc region can inhibit antibody-dependent cellular cytotoxicity (ADCC) and reduce antibody therapeutic efficiency in vivo. Chinese hamster ovary (CHO) cells are the predominant production platform in biopharmaceutical manufacturing. Therefore, the generation of FUT8 knock-out (FUT8KO) CHO cell line is favorable and can be applied to produce completely non-fucosylated antibodies. The characterization of monoclonal antibodies as well as host cell glycoprotein impurities are required for quality control purposes under regulation rules. To understand the role of FUT8 in the glycosylation of CHO cells, we generated a FUT8 knock-out CHO cell line and performed a large-scale glycoproteomics to characterize the FUT8KO and wild-type (WT) CHO cells. The glycopeptides were enriched by hydrophilic chromatography and fractionated 25 fractions by bRPLC followed by analysis using high-resolution liquid chromatography mass spectrometry (LC-MS). A total of 7,127 unique N-linked glycosite-containing intact glycopeptides (IGPs), 928 glycosites, and 442 glycoproteins were identified from FUT8KO and WT CHO cells. Moreover, 28.62% in 442 identified glycoproteins and 26.69% in 928 identified glycosites were significantly changed in the FUT8KO CHO compared to wild-type CHO cells. The relative abundance of all the three N-glycan types (high-mannose, hybrid, and complex) was determined in FUT8KO comparing to wild-type CHO cells. Furthermore, a decrease in fucosylation content was observed in FUT8KO cells, in which core-fucosylated glycans almost disappeared as an effect of FUT8 gene knockout. Meantime, a total of 51 glycosylation-related enzymes were also quantified in these two cell types and 16 of them were significantly altered in the FUT8KO cells, in which sialyltransferases and glucosyltransferases were sharply decreased. These glycoproteomic results revealed that the knock-out of FUT8 not only influenced the core-fucosylation of proteins but also altered other glycosylation synthesis processes and changed the relative abundance of protein glycosylation.

9.
J Agric Food Chem ; 69(23): 6690-6700, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34087070

RESUMO

Protein N-glycosylation in human milk whey plays a substantial role in infant health during postnatal development. Changes in site-specific glycans in milk whey reflect the needs of infants under different circumstances. However, the conventional glycoproteomics analysis of milk whey cannot reveal the changes in site-specific glycans because the attached glycans are typically enzymatically removed from the glycoproteins prior to analysis. In this study, N-glycoproteomics analysis of milk whey was performed without removing the attached glycans, and 330 and 327 intact glycopeptides were identified in colostrum and mature milk whey, respectively. Label-free quantification of site-specific glycans was achieved by analyzing the identified intact glycopeptides, which revealed 9 significantly upregulated site-specific glycans on 6 glycosites and 11 significantly downregulated site-specific glycans on 8 glycosites. Some interesting change trends in N-glycans attached to specific glycosites in human milk whey were observed. Bisecting GlcNAc was found attached to 11 glycosites on 8 glycoproteins in colostrum and mature milk. The dynamic changes in site-specific glycans revealed in this study provide insights into the role of protein N-glycosylation during infant development.


Assuntos
Leite Humano , Soro do Leite , Criança , Colostro , Feminino , Glicosilação , Humanos , Lactação , Polissacarídeos , Gravidez
10.
Talanta ; 223(Pt 1): 121676, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303137

RESUMO

Breast cancer is a highly heterogeneous disease, encompassing a number of biologically distinct entities with specific pathologic features and biological behaviors. In the preliminary experiments, we identified several glycosylation sites of mannose receptors in different breast cancer subtypes and showed that the mannose receptors could be a potential marker for breast cancer. However, the glycan composition on each site is still unknown because the glycan was removed by PNGase F in previous work. Analysis of intact glycopeptides can provide the information of both the glycan composition and the glycosylation site, which can further help to reveal the difference of glycosylation in the four subtypes of breast cancer. In this work, we analyzed the intact glycopeptides of the mannose receptors in serum from breast cancer patients using isobaric tags for relative and absolute quantitation (iTRAQ) and LC-MS/MS. In total, 7 glycosylation sites and 12 glycan types corresponding to 26 intact glycopeptides were characterized from the four subtypes of breast cancer. Among them, 11 glycopeptides can be used to differentiate the subtypes of breast cancer, which further supported the previous conclusion that mannose receptor can be used as a potential marker for the identification of breast cancer subtypes.


Assuntos
Neoplasias da Mama , Glicopeptídeos , Cromatografia Líquida , Humanos , Lectinas Tipo C , Receptor de Manose , Lectinas de Ligação a Manose , Polissacarídeos , Receptores de Superfície Celular , Espectrometria de Massas em Tandem
11.
Front Chem ; 8: 240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363175

RESUMO

Recently, the glycoproteomic analysis of intact glycopeptides has emerged as an effective approach to decipher the glycan modifications of glycoproteins at the site-specific level. A rapid method to enrich intact glycopeptides is essential for the analysis of glycoproteins, especially for biopharmaceutical proteins. In this study, we established a one-step method for the rapid capture of intact glycopeptides for analysis by mass spectrometry. Compared to the conventional sequential enrichment method, the one-step intact glycopeptide enrichment method reduced the sample preparation time and improved the detection of intact glycopeptides with long sequences or non-polar amino acids. Moreover, an increased number of glycosite-containing peptides was identified by the one-step method compared with the sequential method. When we applied this method to the glycoproteomic analysis of glycoengineered Chinese hamster ovary (CHO)-K1 cells with α1,6-fucosyltransferase (FUT8) knockout, the results showed that the knockout of FUT8 altered the overall glycosylation profile of CHO-K1 cells with the elimination of core fucosylation and together with increases in high-mannose and sialylated N-glycans. Interestingly, the knockout of the FUT8 also appeared to regulate the expression of glycoproteins involved in several functions and pathways in CHO-K1 cells, such as the down-regulation of an intracellular lectin LMAN2 showing cellular adaptation to the alterations in FUT8 knockout cells. These findings indicate that the site-specific characterization of glycoproteins from glycoengineered CHO-K1 cells can be achieved rapidly using the one-step intact glycopeptide enrichment method, which could provide insights for bio-analysts and biotechnologists to better tailor therapeutic drugs.

12.
J Proteome Res ; 19(4): 1423-1434, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090575

RESUMO

Endogenous glycopeptides in serum are an invaluable resource for biomarker discovery. Due to the low abundance and the poor fragmentation in tandem mass spectrometry, the identification of endogenously intact glycopeptides still faces many challenges. Herein, an integrated platform is fabricated for the identification of N-linked and O-linked endogenously intact glycopeptides. In this platform, the high-temperature acid denaturation, ultrafiltration, and hydrophilic interaction chromatography steps are combined together for the highly efficient extraction of the endogenously intact glycopeptides from a small amount of serum. Additionally, the twin-spectra scheme and in silico deglycosylation strategy were applied for the identification of N-linked and O-linked endogenous glycopeptides, respectively. In total, 223 intact N-glycopeptides and 51 intact O-glycopeptides are identified from only 40 µL of the human serum sample. This is the first study reporting the identification of endogenously intact N-linked and O-linked glycopeptide and is also the largest data set of endogenously intact glycopeptides reported so far. The distributions of glycans among peptides and proteins and cleavage sites on peptides are further analyzed to seek the regulation of endogenous glycosylation for disease mechanism. The developed strategy provides a novel platform for the disease biomarker discovery.


Assuntos
Glicopeptídeos , Proteômica , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Soro/metabolismo , Espectrometria de Massas em Tandem
13.
J Proteome Res ; 18(9): 3439-3446, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31380653

RESUMO

Aberrant sialylation of glycoproteins is closely related to many malignant diseases, and analysis of sialylation has great potential to reveal the status of these diseases. However, in-depth analysis of sialylation is still challenging because of the high microheterogeneity of protein glycosylation, as well as the low abundance of sialylated glycopeptides (SGPs). Herein, an integrated strategy was fabricated for the detailed characterization of glycoprotein sialylation on the levels of glycosites and site-specific glycoforms by employing the SGP enrichment method. This strategy enabled the identification of up to 380 glycosites, as well as 414 intact glycopeptides corresponding to 383 site-specific glycoforms from only initial 6 µL serum samples, indicating the high sensitivity of the method for the detailed analysis of glycoprotein sialylation. This strategy was further employed to the differential analysis of glycoprotein sialylation between hepatocellular carcinoma patients and control samples, leading to the quantification of 344 glycosites and 405 site-specific glycoforms, simultaneously. Among these, 43 glycosites and 55 site-specific glycoforms were found to have significant change on the glycosite and site-specific glycoform levels, respectively. Interestingly, several glycoforms attached onto the same glycosite were found with different change tendencies. This strategy was demonstrated to be a powerful tool to reveal subtle differences of the macro- and microheterogeneity of glycoprotein sialylation.


Assuntos
Carcinoma Hepatocelular/sangue , Glicoproteínas/sangue , Neoplasias Hepáticas/sangue , Proteômica/métodos , Carcinoma Hepatocelular/patologia , Cromatografia Líquida/métodos , Glicopeptídeos/sangue , Glicosilação , Humanos , Neoplasias Hepáticas/patologia , Espectrometria de Massas em Tandem/métodos
14.
J Proteome Res ; 18(6): 2467-2477, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31055923

RESUMO

Collagen is a potent agonist for platelet activation, presenting itself as a key contributor to coagulation via interactions with platelet glycoproteins. The fine details dictating platelet-collagen interactions are poorly understood. In particular, glycosylation could be a key determinant in the platelet-collagen interaction. Here, we report an affinity purification coupled to a mass spectrometry-based approach to elucidate the function of N-glycans in dictating platelet-collagen interactions. By integrative proteomic and glycoproteomic analysis of collagen-platelet interactive proteins with N-glycan manipulation, we demonstrate that the interaction of platelet adhesive receptors with collagen is highly N-glycan regulated, with glycans on many receptors playing positive roles in collagen binding, with glycans on other platelet glycoproteins exhibiting inhibitory roles on the binding to collagen. Our results significantly enhance our understanding of the details of glycans influencing the platelet-collagen interaction.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , Glicômica , Polissacarídeos/metabolismo , Sequência de Aminoácidos/genética , Colágeno/genética , Glicoproteínas/metabolismo , Humanos , Ativação Plaquetária/genética , Polissacarídeos/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Carbohydr Res ; 402: 180-8, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25498018

RESUMO

C-type lectin-like receptor 2 (CLEC-2) is a newly identified receptor expressed on the platelet surface. It has been reported that CLEC-2 exists as a higher molecular weight (HMW) and a lower molecular weight (LMW) form, which share the same protein core but differ in glycans. The two forms appear to have different ligand-binding abilities, indicating that the differential glycosylation of CLEC-2 possibly produces functionally distinct glycoforms. This study aimed to explore an easy method to directly elucidate the N-glycosylation difference by employing a glycoproteomics approach. The off-line coupling of nano-LC with a MALDI-QIT-TOF mass spectrometer was demonstrated to be capable of sensitive and direct elucidation of the glycosylation difference between HMW and LMW CLEC-2, simultaneously providing information about their oligosaccharide structures and the glycosylation sites. The results reveal that a specific glycosylation site, Asn 134, is differently glycosylated in the two forms, with complex types of bi-antennary, tri-antennary and tetra-antennary, N-linked, fucosylated glycans identified at this site in the HMW form but not in the LMW form. The observed difference in glycosylation might provide new insights into the underlying mechanisms of biological functions of CLEC-2. Because of its simplicity and sensitivity, the method explored in this work suggests that it holds promise as a method of elucidating differences in direct N-glycosylation of target glycoprotein, even in small amount of samples.


Assuntos
Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Cromatografia Líquida , Glicosídeo Hidrolases/metabolismo , Glicosilação , Humanos , Peso Molecular , Polissacarídeos/metabolismo , Proteólise , Relação Estrutura-Atividade , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA