Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402164, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881322

RESUMO

Thin and flexible solid-state electrolyte (SSE) films with high ionic conductivity and low interfacial resistance are urgently required for lithium metal batteries (LMBs). However, it's still challenging to reduce the film thickness to <20 µm, especially for those with high ceramic contents. Herein, a facile slurry casting method is developed to prepare the ultra-thin (14 µm) Li3Zr2Si2PO12 (LZSP) films with ceramic content up to 91% using a composite polymer binder, polyvinylidene fluoride (PVDF), and polyethylene oxide (PEO). It shows that PEO not only enhanced the film flexibility but also makes it be easily peeled off to form a freestanding membrane, PLN. To promote the interfacial ion transport, PEO/lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) is introduced to the film surface, and the resultant tri-layer film, PPLN, shows a satisfying room temperature ionic conductivity of 0.116 mS cm-1, high Li+ transference number of 0.79, and good compatibility with metal lithium. As a result, LMBs using LiFePO4 cathode and PPLN electrolyte exhibit excellent safety as well as electrochemical performances in the wide temperature range between room temperature (RT) and 100 °C.

2.
Angew Chem Int Ed Engl ; 63(29): e202405750, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660918

RESUMO

The high energy density and cost-effectiveness of chloride-ion batteries (CIBs) make them promising alternatives to lithium-ion batteries. However, the development of CIBs is greatly restricted by the lack of compatible electrolytes to support cost-effective anodes. Herein, we present a rationally designed solid polycationic electrolyte (SPE) to enable room-temperature chloride-ion batteries utilizing aluminum (Al) metal as an anode. This SPE endows the CIB configuration with improved air stability and safety (i.e. free of flammability and liquid leakage). A high ionic conductivity (1.3×10-2 S cm-1 at 25 °C) has been achieved by the well-tailored coordination structure of the SPE. Meanwhile, the solid polycationic electrolyte ensures stable electrodes|electrolyte interfaces, which effectively inhibit the growth of dendrites on the Al anodes and degradation of the FeOCl cathodes. The Al|SPE|FeOCl chloride-ion batteries showcased a high discharge capacity around 250 mAh g-1 (based on the cathodes) and extended lifespan. Our electrolyte design opens a new avenue for developing low-cost chloride-ion batteries.

3.
Angew Chem Int Ed Engl ; 63(24): e202400474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38590031

RESUMO

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have shown great promises to overcome the performance upper limit of polymeric membranes for various gas separation processes. However, the gas separation properties of the MMMs largely depend on the MOF-polymer interfacial compatibility which is a metric difficult to quantify. In most cases, whether a MOF filler and a polymer matrix make a good pair is not revealed until the gas transport experiments are performed. This is because there is a lack of characterization techniques to directly probe the MOF-polymer interfacial compatibility. In this work, we demonstrate a self-sorting method to rank the interface compatibility among several MOF-polymer pairs. By mixing one MOF with two polymers in an MMM, the demixing of two polymers will form two polymer domains. The MOF particles will preferably partition into the "preferred" polymer domain due to their higher interfacial affinity. By scanning different polymer pairs, a rank of MOF-polymer interfacial compatibility from high to low can be obtained. Moreover, based on this ranking, it was also found that a highly compatible MOF-polymer pair suggested by this method also corresponds to a more predictable MMM gas separation performance.

4.
ACS Nano ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314720

RESUMO

Solid-state Li metal batteries (SSLMBs) are widely investigated since they possess promising energy density and high safety. However, the poor interfacial compatibility between the electrolyte and electrodes limits their promising development. Herein, a robust composite electrolyte (poly(vinyl ethylene carbonate) electrolyte with 3 wt % of BaTiO3, PVEC-3BTO) with excellent interfacial performance is rationally designed by incorporating ferroelectric BaTiO3 (BTO) nanoparticles into the poly(vinyl ethylene carbonate) (PVEC) electrolyte matrix. Benefiting from the high dielectric constant and ferroelectric properties of BTO, the interfacial compatibility between electrolytes and electrodes was significantly improved. The enhanced Li+ transference number (0.64) of solid electrolyte and in situ generated BaF2 inorganic interphase contribute to the enhanced cycling stability of PVEC-3BTO based Li//Li symmetrical batteries. Furthermore, the antioxidation ability of PVEC-3BTO has also been enhanced by modulating the local electric field for good pairing with high-voltage LiCoO2 material. Therefore, in this work, the mechanism of BTO for improving interfacial compatibility is revealed, and also useful methods for addressing the interface issues of SSLMBs have been provided.

5.
Int J Biol Macromol ; 259(Pt 1): 129248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191108

RESUMO

Marine biological resources, serving as a renewable and sustainable reservoir, holds significant import for the utilization of composite material. Hence, we produced bamboo fiber/poly(3-hydroxybutyrate) (BF/PHB) biocomposites with exceptional performance and economic viability, drawing inspiration from the resilience of crustacean shells. Polyaminoethyl modified chitin (PAECT) was synthesized using the alkali freeze-thaw method and introduced into the interface between BF and PHB to improve interfacial adhesion. The resulting chitin fibers, characterized by their intertwined helical chains, constructed a flexible mesh structure on the BF surface through an electrostatic self-assembly approach. The interwoven PAECT filaments infiltrated the dual-phase structure, acting as a promoter of interfacial compatibility, while the flexible chitin network provided a greater capacity for deformation accommodation. Consequently, both impact and tensile strength of the BF/PHB composites were notably enhanced. Additionally, this flexible layer ameliorated the thermal stability and crystalline properties of the composites. This investigation aimed to leverage the distinctive helical configuration of chitin to facilitate the advancement of bio-reinforced composites.


Assuntos
Quitina , Poliésteres , Poli-Hidroxibutiratos , Poliésteres/química , Ácido 3-Hidroxibutírico , Resistência à Tração
6.
Angew Chem Int Ed Engl ; 63(7): e202316093, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129312

RESUMO

Aggregation of filler particles during the formation of mixed matrix membranes is difficult to avoid when filler loadings exceed a 10-15 wt %. Such agglomeration usually leads to poor membrane performance. In this work, using a ZIF-67 metal-organic framework (MOF) as filler along with surface modification of Ag4 tz4 to improve processability and selective olefin adsorption, we demonstrate that highly loaded with a very low agglomeration degree membranes can be synthesized displaying unmatched separation selectivity (39) for C3 H6 /C3 H8 mixtures and high permeability rates (99 Barrer), far surpassing previous reports in the literature. Through molecular dynamics simulation, the enhanced compatibility between ZIF-67 and polymer matrix with adding Ag4 tz4 was proven and the tendency in gas permeability and C3 H6 selectivity in the mixed matrix membranes (MMMs) were well explained. More importantly, the membrane showed a wide range of pressure and temperature resistance, together with remarkable long-term stability (>900 h). The modification method might help solve interface issues in MMMs and can be extended to the fabrication of other fillers to achieve high performance MMMs for gas separation.

7.
Int J Biol Macromol ; 258(Pt 2): 128918, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134986

RESUMO

Applications for polylactic acid (PLA) are significantly impacted by its poor mechanical properties and lack of thermal stability. The goal of this work is to bridge the gap of poor compatibility among the components and enhance their interface interlocking capability to improve the toughness and thermal stability. Ultrafine bamboo charcoal (UFBC) was treated through deep eutectic solvent (DES) method to deposit sodium lignosulfonate (LS) on its surface. LS was used with PLA as a bio-coupling agent to create an eco-friendly PLA composite film with a wide range of characteristics. Benefiting from the penetration of PLA to the internal pores in UFBC, the resultant L-UFBC/PLA film has a good mechanical interlocking structure. Ls can increase the compatibility and strengthen the interface interlocking capability through DES method, which greatly improves the mechanical properties of the system. In comparison to pure PLA one, the elongation at break was 136.24 % greater, and the crystallinity (Xc) increased from 1.09 % to 3.33 %. Furthermore, the thermal stability of the system was also improved, and the residual at 600 °C rose by 4.83 %. These characteristics offer the prepared L-UFBC/PLA film a wide range of potential applications in the packaging, medical, agricultural, and other sectors.


Assuntos
Agricultura , Carvão Vegetal , Análise por Conglomerados , Poliésteres
8.
ACS Appl Mater Interfaces ; 15(48): 55713-55722, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38058104

RESUMO

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes are considered promising materials for realizing high-safety and high-energy-density lithium metal batteries. However, the high crystallinity of PEO at room temperature triggers low ionic conductivity and Li+ transference number, critically hindering practical applications in solid-state lithium metal batteries. Herein, we prepared nanosized TiO2 with enriched oxygen vacancies down to 13 nm as fillers by laser irradiation, which can be coated by in situ generated polyacetonitrile, ensuring good dispersibility in PEO. The electrolytes with nanosized TiO2 show a combination of high ionic conductivity, high Li+ transference number, superior electrochemical stability, and enhanced mechanical robustness. Accordingly, the lithium symmetric batteries with nanosized TiO2 composite solid electrolytes exhibit a stable cycling life up to 590 h at 0.25 mA cm-2. The full Li metal batteries paired with a LiFePO4 cathode deliver superior durability for 550 cycles. Moreover, the proof-of-concept pouch cells demonstrate excellent safety performance under various harsh conditions. This work provides a realistic guide in designing novel fillers to achieve stable operation of high-safety and energy-dense solid-state lithium metal batteries.

9.
Nano Lett ; 23(23): 10856-10863, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37982531

RESUMO

All-solid-state sulfide-based Li metal batteries are promising candidates for energy storage systems. However, thorny issues associated with undesired reactions and contact failure at the anode interface hinder their commercialization. Herein, an indium foil was endowed with a formed interlayer whose surface film is enriched with LiF and LiIn phases via a feasible prelithiation route. The lithiated alloy of the interlayer can regulate Li+ flux and charge distribution as a Li reservoir, benefiting uniform Li deposition. Meanwhile, it can suppress the reductive decomposition of the Li6PS5Cl electrolyte and maintain sufficient solid-solid contact. In situ impedance spectra reveal that constant interface impedance and fast charge transfer are realized by the interlayer. Further, long-term Li stripping/plating over 2000 h at 2.55 mA cm-2 is demonstrated by this anode. All-solid-state cells employing a LiCoO2 cathode and the Pre In anode can work for over 700 cycles with a capacity retention of 96.15% at 0.5 C.

10.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446661

RESUMO

Cellulose membranes have eco-friendly, renewable, and cost-effective features, but they lack satisfactory cycle stability as a sustainable separator for batteries. In this study, a two-step method was employed to prepare a sandwich-like composite membrane of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/cellulose/ PVDF-HFP (PCP). The method involved first dissolving and regenerating a cellulose membrane and then electrospinning PVDF-HFP on its surface. The resulting PCP composite membrane exhibits excellent properties such as high porosity (60.71%), good tensile strength (4.8 MPa), and thermal stability up to 160 °C. It also has exceptional electrolyte uptake properties (710.81 wt.%), low interfacial resistance (241.39 Ω), and high ionic conductivity (0.73 mS/cm) compared to commercial polypropylene (PP) separators (1121.4 Ω and 0.26 mS/cm). Additionally, the rate capability (163.2 mAh/g) and cycling performance (98.11% after 100 cycles at 0.5 C) of the PCP composite membrane are superior to those of PP separators. These results demonstrate that the PCP composite membrane has potential as a promising separator for high-powered, secure lithium-ion batteries.


Assuntos
Celulose , Lítio , Íons , Membranas , Polipropilenos
11.
Membranes (Basel) ; 13(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37505002

RESUMO

Polylactic acid (PLA) is considered a mature alternative to synthetic plastics made from petroleum by-products, possessing the advantages of good mechanical strength. However, it also has some disadvantages such as brittleness and low toughness. In order to overcome and improve some of these unfavorable properties, PLA/PBAT composites were prepared by blending PLA with Poly (butylene adipate-co-terephthalate) (PBAT), and adding 4,4'-methylene diphenyl diisocyanate (MDI) and chitosan nanoparticles (ChNPs) as compatibilizers to investigate the effects of different compatibilizers on the properties of the composites. The main observations are as follows: FT-IR indicated that MDI did not add new groups, while the addition of ChNPs added a substantial amount of hydroxyl and methylene groups. The addition of both MDI and ChNPs did not have any effect on the crystalline shape of the composites, but could potentially reduce their crystallinity, increase the melt peak temperature, wet the boundary of the PLA and PBAT phases, decrease the size of the dispersed phases, reduce the number of dispersed phases, and improve interfacial compatibility. The incorporation of MDI increased the tensile strength from 13.02 MPa to 19.24 MPa, whereas the addition of ChNPs substantially enhanced the elongation at the break from 3.84% to 19.24%. Furthermore, the inclusion of MDI conferred enhanced moisture resistance, whereas the addition of ChNPs seemed to weaken the resistance to moisture.

12.
J Colloid Interface Sci ; 648: 855-864, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327628

RESUMO

Inorganic/organic composite solid electrolytes (CSEs) have attracted ever-increasing attentions due to their outstanding mechanical stability and processibility. However, the inferior inorganic/organic interface compatibility limits their ionic conductivity and electrochemical stability, which hinders their application in solid-state batteries. Herein, we report a homogeneously distributed inorganic fillers in polymer by in-situ anchoring SiO2 particles in polyethylene oxide (PEO) matrix (I-PEO-SiO2). Compared with ex-situ CSEs (E-PEO-SiO2), SiO2 particles and PEO chains in I-PEO-SiO2 CSEs are closely welded by strong chemical bonds, thus addressing the issue of interfacial compatibility and realizing excellent dendrite-suppression ability. In addition, the Lewis acid-base interactions between SiO2 and salts facilitate the dissociation of sodium salts and increase the concentration of free Na+. Consequently, the I-PEO-SiO2 electrolyte demonstrates an improved Na+ conductivity (2.3 × 10-4 S cm-1 at 60 °C) and Na+ transference number (0.46). The as constructed Na3V2(PO4)3 ‖ I-PEO-SiO2 ‖ Na full-cell demonstrates a high specific capacity of 90.5 mAh g-1 at 3C and an ultra-long cycling stability (>4000 cycles at 1C), outperforming the state-of-the-art literatures. This work provides an effective way to solve the issue of interfacial compatibility, which can enlighten other CSEs to overcome their interior compatibility.

13.
Nanomicro Lett ; 15(1): 82, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002362

RESUMO

Composite solid electrolytes (CSEs) with poly(ethylene oxide) (PEO) have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li+ solvating capability, flexible processability and low cost. However, unsatisfactory room-temperature ionic conductivity, weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress. Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture, spatial distribution and content, which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes. Unfortunately, a comprehensive review exclusively discussing the design, preparation and application of PEO/ceramic-based CSEs is largely lacking, in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics. Consequently, this review targets recent advances in PEO/ceramic-based CSEs, starting with a brief introduction, followed by their ionic conduction mechanism, preparation methods, and then an emphasis on resolving ionic conductivity and interfacial compatibility. Afterward, their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized. Finally, a summary and outlook on existing challenges and future research directions are proposed.

14.
Carbohydr Polym ; 306: 120612, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746592

RESUMO

Polysaccharide films containing protein additives have good application prospects in agriculture and food field. However, interfacial incompatibility between hydrophobic proteins and hydrophilic polymers remains a major technical challenge. In this work, the interfacial compatibility between hydrophobic zein and hydrophilic chitosan (CS) is improved by the chemical crosslinking between zinc ions of curcumin-loaded zeolitic imidazolate framework-8 (Cur-ZIF-8) with CS and zein. With the improvement of interface compatibility, the results show that the elongation at break and O2 barrier property of synthesized Cur-ZIF-8/CS/Zein are 9.2 and 1.5 times higher than CS/Zein, respectively. And the Cur-ZIF-8/CS/Zein exhibits superior antibacterial and antioxidant properties as well. Importantly, Cur-ZIF-8/CS/Zein can also be used as an intelligent-responsive release platform for curcumin. As a result, Cur-ZIF-8/CS/Zein can keep the freshness and appearance of litchi at least 8 days longer than that of CS/Zein. Therefore, this study provides a novel method to improve the interfacial compatibility between hydrophobic proteins and hydrophilic polymers, and is expected to expand the application of protein/polymer composites in agriculture and food field.


Assuntos
Quitosana , Curcumina , Litchi , Nanopartículas , Zeína , Curcumina/farmacologia , Curcumina/química , Quitosana/química , Zeína/química , Preparações de Ação Retardada/farmacologia , Polímeros , Antibacterianos/farmacologia , Nanopartículas/química
15.
ACS Appl Mater Interfaces ; 15(3): 4690-4702, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36634206

RESUMO

Microencapsulation of paraffin with lead tungstate shell (Pn@PWO) shows the drawbacks of low wettability and poor leakage-proof property and thermal reliability, restricting the application of phase change microcapsules. Herein, a novel paraffin@lead tungstate@silicon dioxide double-shelled microcapsule (Pn@PWO@SiO2) has been successfully constructed by the emulsion-templated interfacial polycondensation and applied in the waterborne polyurethane (WPU). The results indicated that a SiO2 layer with controlled thickness was formed on the PbWO4 shell. The Pn@PWO@SiO2 microcapsules have exhibited superior leakage-proof properties and thermal reliability through double-shelled protection, and the leakage rate decreased by at least 54.11% compared to that of Pn@PWO microcapsules. The SiO2 layer with abundant polar groups ameliorated the wettability of microcapsules and the interfacial compatibility between microcapsules and the WPU matrix. The tensile strength of WPU/Pn@PWO@SiO2-2 composites reached 10.98 MPa, which was over 7 times greater than that of WPU/Pn@PWO composites. In addition, WPU/Pn@PWO@SiO2-2 composites with a latent heat capacity of over 41 J/g exhibited efficient phase change stability and γ-ray shielding properties. Also, the mass attenuation coefficients reached 1.38 cm2/g at 105.3 keV and 1.12 cm2/g at 86.5 keV, respectively. These properties will greatly promote the application of WPU/Pn@PWO@SiO2 composites into γ-ray-shielding devices with thermal regulation.

16.
J Colloid Interface Sci ; 631(Pt B): 78-88, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395629

RESUMO

HYPOTHESIS: The high surface tension of liquid metal (LM) causes interface incompatibility and poor bonding strength with many substrates. Fine adjustment towards the properties of the surface area is sufficient to introduce strong bonding. Hence, we hypothesize that the interlocking structure using hydrophilic polyvinyl alcohol (PVA) as a "bridge" should be helpful for tight interfacial bonding of LM with polymeric substrates, thus achieving high-performance LM/polymer membranes, which have wide applications in the field of soft sensors and robotics. EXPERIMENTS: The bulk EGaIn was fabricated into LM nanoparticles (LMNPs@PVA) solution. Then, PVA molecules were "doped" into the surface crosslink of the plasma treated polymer substrate by an interfacial penetrating method. Afterward, the solution was evenly dropped on the surface of the treated substrate to obtain the LMNP/polymer membrane after the water evaporated. Photothermal actuators were fabricated based on the membranes. FINDINGS: During the interlocking structure, PVA macromolecules could be doped and trapped onto the top surfaces of various polymer substrates as binding "bridges" between the LMNPs and the matrix materials. The achieved LMNP membrane exhibites satisfactory bonding strength, durability and water-assisted erase-reprint, which can be used as soft photothermal actuators with remote laser control.


Assuntos
Nanopartículas Metálicas , Polímeros , Metais , Álcool de Polivinil , Água
17.
ACS Appl Mater Interfaces ; 14(48): 53828-53839, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444892

RESUMO

Compared with simplex ceramic or polymer solid electrolytes, composite solid electrolyte (CSE) is more promising for its better interfacial compatibility to electrode and high ionic conductivity simultaneously. Further, the interfacial compatibility within ceramic and polymer is considered to be more and more critical to the overall performance of solid-state batteries. Avoiding the agglomeration of ceramic particles at high loadings can improve the whole intrinsic characteristic and electrochemical performance of CSEs. Herein, we designed a CSE (EO@LLZTO-PEO), which consists of composite particles (EO@LLZTO) as a filler and polyethylene oxide (PEO) as polymer matrix. EO@LLZTO was prepared by chemically grafting polyethylene glycol monomethyl ether methacrylate (MPEG-MAA) on the micro-sized Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles. By introducing of polymer containing EO segments onto LLZTO, the interfacial compatibility between LLZTO and PEO matrix is highly enhanced, and the intrinsic Li+ complexation capability of MPEG-MAA is improved, even at the high loading of garnet. EO@LLZTO-PEO shows a high ionic conductivity (1.91 mS cm-1), a broad electrochemical window (∼5.2 V vs Li/Li+), and a high lithium ion transference number (0.72). The Li/EO@LLZTO-PEO/Li battery also exhibits a long cycle stability (over 1200 h of cycling). Moreover, all-solid-state batteries with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes exhibit excellent cycling stability and rate performance. Consequently, enhancing the interfacial compatibility between organic and inorganic electrolytes is identified to be one of the crucial strategies for commercial solid-state lithium batteries.

18.
Polymers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235960

RESUMO

This review covers the development of eco-friendly, bio-based materials based on polylactide (PLA) and cellulose nanowhiskers (CNWs). As a biodegradable polymer, PLA is one of the promising materials to replace petroleum-based polymers. In the field of nanocomposites, CNWs offer many advantages; they are made from renewable resources and exhibit beneficial mechanical and thermal properties in combination with polymer matrix. A wide range of surface modifications has been done to improve the miscibility of CNW with the PLA homopolymer, which generally gives rise to hydrophobic properties. PLA-CNW nanocomposite materials are fully degradable and sustainable and also offer improved mechanical and thermal properties. Limitations pertaining to the miscibility of CNWs with PLA were solved through surface modification and chemical grafting on the CNW surfaces. Further development has been done by combining PLA-based material via stereocomplexation approaches in the presence of CNW particles, known as bio-stereo-nanocomposite PLA-CNW. The combination of stereocomplex crystalline structures in the presence of well-distributed CNW particles produces synergetic effects that enhance the mechanical and thermal properties, including stereocomplex memory (melt stability). The bio-based materials from PLA and CNWs may serve as eco-friendly materials owing to their sustainability (obtained from renewable resources), biodegradability, and tunability properties.

19.
ACS Appl Mater Interfaces ; 14(43): 48619-48626, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263974

RESUMO

Inorganic solid-state electrolytes (ISSEs) have been extensively researched as the critical component in all-solid-state lithium-metal batteries (ASSLMBs). Many ISSEs exhibit high ionic conductivities up to 10-3 S cm-1. However, most of them suffer from poor interfacial compatibility with electrodes, especially lithium-metal anodes, limiting their application in high-performance ASSLMBs. To achieve good interfacial compatibility with a high-voltage cathode and a lithium-metal anode simultaneously, we propose Li3InCl6/Li2OHCl bilayer halide ISSEs with complementary advantages. In addition to the improved interfacial compatibility, the Li3InCl6/Li2OHCl bilayer halide ISSEs exhibit good thermal stability up to 160 °C. The Li-symmetric cells with sandwich electrolytes Li2OHCl/Li3InCl6/Li2OHCl exhibit long cycling life of over 300 h and a high critical current density of over 0.6 mA cm-2 at 80 °C. Moreover, the all-inorganic solid-state lithium-metal batteries (AISSLMBs) LiFePO4-Li3InCl6/Li3InCl6/Li2OHCl/Li fabricated by a facile cold-press method exhibit good rate performance and long-term cycling stability that stably cycle for about 3000 h at 80 °C. This work presents a facile and cost-effective method to construct bilayer halide ISSEs, enabling the development of high-performance AISSLMBs with good interfacial compatibility and thermal stability.

20.
ACS Appl Mater Interfaces ; 14(40): 45880-45892, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165501

RESUMO

The integration of membranes with additives such as functionalized nanomaterials can be recognized as an effective method to enhance membrane performance. However, to obtain an efficient nanoparticle-decorated membrane, the compatibility of nanomaterials remains a challenge. Hydrophilic carboxylated covalent organic frameworks (COF-COOH) might be expected to avoid the drawbacks of aggregation and easy shedding of inorganic materials caused by the poor interfacial compatibility. Herein, a highly compatible dip-coating strategy was proposed for the superhydrophilic modification of polyvinylidene fluoride membrane via COF-COOH integrated with dopamine. COF-COOH together with polydopamine nanoparticles were uniformly and stably attached to the membrane due to the high interfacial compatibility, constructing a coating with rough hierarchical nanostructures and abundant carboxyl groups. The synergistic effects of multiscale structures and chemical groups endow the membrane with superhydrophilicity and underwater superoleophobicity, the water contact angle decreased from 123 to 15°, and the underwater oil contact angle increased from 132 to 162°. Accordingly, the modified membrane exhibits an ultrahigh oil rejection ratio (>98%), a high flux (the maximum reaches 1843.48 L m-2 h-1 bar-1), attractive antifouling ability, and impregnable stability. This work would provide a momentous reference for the application of COF-COOH in practical oily wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA