Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 472-481, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39154440

RESUMO

Sheets stacking of Ti3C2Tx MXene dramatically reduces the ion-accessible sites and brings a sluggish reaction kinetics. While introducing transitional metal oxides or polymers in the MXene films could partially alleviate such issue, their enhanced performances are realized at the expense of electrode conductivity or cycling stability. Herein, we report an alternative spacer of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hollow spheres (HSs) which are fabricated by a facile template-assisted interfacial polymerization. The Fe3+ ions electrostatically adsorbed on the -SO3H groups of the sulfonated polystyrene spheres (S-PS) initiate the polymerization of uniform PEDOT shell, yielding uniform PEDOT HSs after dissolving the S-PS core. Introducing these PEDOT HSs in the MXene film generates the highly flexible MXene-PEDOT (MP) films featuring hierarchically porous network and high conductivity (283 S cm-1). Consequently, specific capacitance of 218 F g-1 at 3  mV s-1, along with a forty-folds decrease in relaxation time constant (1.0 vs 39.8 s) has been achieved. Moreover, the MP film also exhibits nearly thickness-independent capacitive performances with film thickness in the range of 10-46 µm. A maximal energy density of 21.2 µWh cm-2 at 1015 µW cm-2 together with 92 % capacitance retention over 5000 cycles are achieved for the MP-based solid-state supercapacitor. The intrinsic high conductivity, excellent mechanical flexibility and good structure integrity are responsible for such outstanding electrochemical behaviors.

2.
Membranes (Basel) ; 14(10)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39452820

RESUMO

With each passing year, water scarcity in the world is increasing, drying up rivers, lakes, and dams. Reverse osmosis technology is a very viable alternative which helps to reduce water shortages. One of the challenges is to make the process more efficient, and this can be achieved by improving the capacity by adapting membranes with nanomaterials in order to increase the permeate flux without exceeding the limits established in the process. In this research, brackish water membranes (BW30) were modified with ZnO nanoparticles by interphase polymerization. The modified membranes and BW30 (unmodified) were characterized by FTIR, AFM, contact angle, and micrometer. The membranes were tested in a cross-flow apparatus using 9000 ppm brackish water, and their permeate flux, salt rejection, and concentration polarization were determined. The salt rejection for the 10 mg ZnO NP membrane was 97.13 and 97.77% at 20 and 30 Hz, respectively, sufficient to generate drinking water. It obtained the best permeate flux of 12.2% compared to the BW30 membrane with 122.63 L m-2 h-1 at 6.24 MPa and 30 Hz, under these conditions, and the concentration polarization increased.

3.
Angew Chem Int Ed Engl ; : e202416050, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382223

RESUMO

Efficient incorporation of supramolecular hosts in polymeric membranes can impart the overall matrix with new properties for a range of cutting-edge applications. Here, we introduce a Supramolecular Interfacial Assembly (SIA) method for the fabrication of polymeric membranes featuring embedded macrocycles. Through harnessing the quasi-liquid nature of the concentrated polymer solution, SIA orchestrates the homogenous spreading of macrocycles in an aqueous layer on its surface, leading to the creation of an interface between "water/water" phases, subsequently forming a cross-linked membrane driven by supramolecular electrostatic interactions. Remarkably, compared to the traditional interfacial polymerization, SIA adheres to a "green" paradigm without the need for organic solvents. The resultant composite membrane exhibits superior performance in organic solvent nanofiltration (OSN), owing to the precise molecular sieving property provided by the macrocycles with well-defined permanent cavities. This fabrication method holds great promise for the innovative design of composite membranes, which can greatly impact the production of smart membrane materials for advanced technology applications in the future.

4.
Angew Chem Int Ed Engl ; : e202416980, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375948

RESUMO

Synthesis and assembly of two-dimensional (2D) polymeric materials present a tricky trade-off between the high reaction rate and precise morphology control. Here we report a nanoconfined synthesis of imine-based 2D covalent organic frameworks (COFs) at the interface of oil-in-water (O/W) emulsion droplets stabilized by cationic surfactants. Highly uniform nanocapsules (NCs) could be prepared without adding extra catalysts at room temperature in just 4.5 h at a yield of 86%. The NCs have tunable average diameters and shell thicknesses, depending on the monomer and surfactant types/concentrations. Their BET-specific surface areas are up to 139.0 m2/g, mainly contributed by narrowly-distributed mesopores at ~5.0 nm and micropores at 1.4 nm. The surfactant plays the role of a catalyst during the reaction and interestingly, it also regulates the formation of mesopores and their sizes. Both theoretical and experimental studies confirm that the reaction has been accelerated by two orders of magnitude at the microdroplet interface, compared to that without emulsification. The resulting NCs could be well dispersed in water, and they have been demonstrated to be highly efficient nanocatalysts in application of water-based hydrogen evolution. Such microdroplet interface-confined synthesis may facilitate the future development of 2D polymeric materials for more advanced applications.

5.
ACS Appl Mater Interfaces ; 16(38): 51532-51541, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39263915

RESUMO

Interfacial polymerization has emerged as a robust method for fabricating task-specific polyamide (PA) membranes. However, the limited microporosity of highly cross-linked PA membranes constrains their effectiveness in gas separation applications. Herein, we introduce an ionic liquid (IL)-regulated interfacial polymerization process to fabricate polyamide nanofilms incorporating kinked tetrakis (4-aminophenyl) methane monomers. In situ ultraviolet-visible spectroscopy demonstrates that the diffusion of 1,3,5-benzenetricarbonyl trichloride (TMC) toward the interface increases with the IL/H2O ratio, leading to the formation of a more compact membrane with a higher cross-linking degree. The PA-TAM7/3-60 min membrane exhibits a CO2 permeance of 29.8 GPU and a CO2/CH4 selectivity of 109, exceeding the 2008 Robeson upper bond. Additionally, the highly cross-linked structure imparts the membranes with notable plasticization resistance. Mixed-gas tests (CO2/CH4 = 50/50, v/v) reveal that the PA-TAM7/3-60 min membrane experiences only a 2% reduction in CO2 permeance and a 10% decrease in CO2/CH4 selectivity at a CO2 partial pressure of 300 PSIG, compared to its performance at 30 PSIG. The ease of tuning membrane structure and gas separation performance, along with its excellent plasticization resistance, underscores the potential of these PA membranes for task-specific gas separations.

6.
Membranes (Basel) ; 14(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39330531

RESUMO

The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.

7.
Polymers (Basel) ; 16(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339033

RESUMO

The present work details the development of carbon fiber-reinforced epoxy membranes with excellent rejection of small-molecule dyes. It is a proof-of-concept for a more sustainable membrane design incorporating carbon fibers, and their recycling and reuse. 4,4'-methylenebis(cyclohexylamine) (MBCHA) polymerized with either bisphenol-A-diglycidyl ether (BADGE) or tetraphenolethane tetraglycidylether (EPON Resin 1031) in polyethylene glycol (PEG) were used to make monolithic membranes reinforced by nonwoven carbon fibers. Membrane pore sizes were tuned by adjusting the molecular weight of the PEG used in the initial polymerization. Membranes made of BADGE-MBCHA showed rejection of Rose Bengal approaching 100%, while tuning the pore sizes substantially increased the rejection of Methylene Blue from ~65% to nearly 100%. The membrane with the best permselectivity was made of EPON-MBCHA polymerized in PEG 300. It has an average DI flux of 4.48 LMH/bar and an average rejection of 99.6% and 99.8% for Rose Bengal and Methylene Blue dyes, respectively. Degradation in 1.1 M sodium hypochlorite enabled the retrieval of the carbon fiber from the epoxy matrix, suggesting that the monolithic membranes could be recycled to retrieve high-value products rather than downcycled for incineration or used as a lower selectivity membrane. The mechanism for epoxy degradation is hypothesized to be part chemical and part physical due to intense swelling stress leading to erosion that leaves behind undamaged carbon fibers. The retrieved fibers were successfully used to make another membrane exhibiting similar performance to those made with pristine fibers.

8.
ACS Nano ; 18(39): 27065-27076, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39308162

RESUMO

Continuous covalent organic framework (COF) thin membranes have garnered broad concern over the past few years due to their merits of low energy requirements, operational simplicity, ecofriendliness, and high separation efficiency in the application process. This study marks the first instance of fabricating two distinct, self-supporting COF membranes from identical building blocks through solvent modulation. Notably, the precision of the COF membrane's separation capabilities is substantially enhanced by altering the pore alignment from a random to a vertical orientation. Within these confined channels, the membrane with vertically aligned pores and micron-scale stacking thickness demonstrates rapid and selective transportation of Li+ ions over Na+ and K+ ions, achieving Li+/K+ and Li+/Na+ selectivity ratios of 38.7 and 7.2, respectively. This research not only reveals regulated orientation and layer stacking in COF membranes via strategic solvent selection but also offers a potent approach for developing membranes specialized in Li+ ion separation.

9.
Angew Chem Int Ed Engl ; : e202414472, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292509

RESUMO

Rapid, on-site measurement of ppm-level humidity in real time remains a challenge. In this work, we fabricated a few micrometer thick, ß-ketoenamine-linked covalent organic framework (COF) membrane via interfacially confined condensation of 1,3,5-tris-(4-aminophenyl)triazine (TTA) with 1,3,5-tri-formylphloroglucinol (TP). Based on the super-sensitive and reversible response of the COF membrane to water vapor, we developed a high-performance film-based fluorescence humidity sensor, depicting unprecedented detection limit of 0.005 ppm, fast response/recovery (2.2 s/2.0 s), and a detection range from 0.005 to 100 ppm. Remarkably, more than 7,000-time continuous tests showed no observable change in the performance of the sensor. The applicability of the sensor was verified by on-site and real-time monitoring of humidity in a glovebox. The superior performance of the sensor was ascribed to the highly porous structure and unique affinity of the COF membrane to water molecules as they enable fast mass transfer and efficient utilization of the water binding sites. Moreover, based on the remarkable moisture driven deformation of the COF membrane and its composition with the known polyimide films, some conceptual actuators were created. This study brings new ideas to the design of ultra-sensitive film-based fluorescent sensors (FFSs) and high-performance actuators.

10.
Nano Lett ; 24(40): 12382-12389, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39258768

RESUMO

Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations. In conjunction with the increased intracavity size, the water permeability follows an augmented trend of 3A-TMC, 4A1-TMC, and 4A2-TMC (TMC: trimesoyl chloride) while exhibiting increased molecular weight cut-offs due to larger free-volume elements and stronger pore interconnectivity. Our proposed macrocyclic amine design strategy provides a guideline for finely regulated microporous membranes with high potential in NF-related applications.

11.
Adv Mater ; 36(36): e2404164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091057

RESUMO

The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes. Here, the synthesis of polyester nanofilms derived from crosslinked ß-CD, demonstrating remarkable Na2SO4 rejection (≈92 - 99.5%), high water permeance (≈4.4 - 37.4 Lm-2h-1bar-1), extremely low hexane permeance (<1 Lm-2h-1bar-1), and extremely high ratio (α > 500) of permeances for polar and non-polar liquids, is reported. Molecular simulations support the findings, indicating that neither the polar nor the non-polar liquids flow through the ß-CD cavity in the nanofilm. Instead, liquid transport predominantly occurs through the 2.2 nm hydrophilic aggregate pores. This challenges the presumed functional role of macrocyclic cavities in liquid transport and raises questions about the existence of the Janus structure in nanofiltration membranes produced from the macrocyclic monomers.

12.
Environ Sci Technol ; 58(36): 16204-16214, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190017

RESUMO

Although hydrophilic modification of the membrane surface is widely adopted, polymeric membranes still suffer from irreversible fouling caused by hydrophilic components in surface water. Here, an ultrathin hydrogel layer (40 nm) with hydrophilic-hydrophobic textures was in situ grown onto the polysulfone ultrafiltration membrane surface using an organic-radical-initiated interfacial polymerization technique. The interfacial polymerization of hydrophilic and hydrophobic monomers ensured the molecular-scale distribution of hydrophilic and hydrophobic nanodomains on the membrane surface. These nanodomains, with their molecular lengths, facilitated dynamic repulsion interactions between the uniformly textured surface and foulant components with different degrees of hydrophilicity. Chemical force characterization confirmed that the adhesion force between the hydrophilic-hydrophobic textured membrane surface and foulants (dodecane, bovine serum albumin, and humic acid) was greatly reduced. Dynamic filtration experiments showed that a hydrophilic-hydrophobic textured membrane always possessed the largest water flux and the best antifouling performance. Furthermore, the foulant coverage ratio on the membrane surface was first evaluated by measuring changes in surface streaming potentials, which demonstrated a 69% reduction in the amount of foulant adhering to the hydrophilic-hydrophobic textured membrane surface. Therefore, the construction of hydrophilic-hydrophobic nanodomains on the membrane surface provides a promising strategy for alleviating membrane fouling caused by both hydrophobic and hydrophilic components during ultralow pressurized ultrafiltration processes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Ultrafiltração , Incrustação Biológica , Polímeros/química , Soroalbumina Bovina/química
13.
ACS Appl Mater Interfaces ; 16(36): 48438-48447, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39109880

RESUMO

Utilizing softly confined self-assembly at the water surface represents a promising approach for the fabrication of two-dimensional molecular monolayers (2D MMs), which have predominantly been concentrated on amphiphilic organic compounds before. Herein, we introduce a straightforward method termed "water surface-assisted molecular deposition (WSAMD)" to organize nonamphiphilic molecules into dense monolayers with high reproducibility. To underscore the versatility and merit of this methodology in the field of supramolecular electronics, we have successfully fabricated a range of defect-free, uniform semiconducting polymer monolayers, featuring a thickness reflective of molecular architectures. The charge carrier mobility could reach 0.05 cm2 V-1 s-1 for holes and 3.5 × 10-4 cm2 V-1 s-1 for electrons, respectively, in p-type and n-type polymeric monolayers when tested as the active layer in field-effect transistors. Furthermore, in situ polymerization reactions can be exploited to generate conductive monolayers of macromolecules such as polybenzylaniline (PBnANI) and polypyrrole (PPy), where PBnANI monolayers exhibit channel length-dependent conductivity, up to 0.37 S cm-1. The advent of the WSAMD method heralds a significant leap forward in the advancement of molecular 2D materials, catalyzing new avenues of exploration within material chemistry.

14.
Water Res ; 265: 122276, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39154397

RESUMO

Per- and polyfluoroalkyl substances (PFAS) in water requires sufficient removal due to their extreme chemical stability and potential health risk. Membrane separation can be a promising strategy, while membranes with conventional structures used for PFAS removal often face challenges such as limited efficiency and stability. In this study, a novel metal-organic framework (MOF) membrane with local modification of polyamide (PA) was developed by introducing interfacial polymerization process during the construction of lamellar membranes with MOF nanosheets. Benefiting from the dense structure and strong negative surface charge, the PA-modified MOF membrane could effectively remove 11 types of PFAS (five short-chain and six long-chain ones with molecular weights ranging from 214.0 to 514.1 Da), especially displaying high rejections for short-chain PFAS (over 84%), along with a remarkable water permeance of 21.4 L·m⁻²·h⁻¹·bar⁻1. The membrane removal characteristics for PFAS were deeply analyzed by elucidating various rejection mechanisms, with particularly distinguishing the rejection and adsorption capacity. Moreover, the membrane stability was significantly enhanced, demonstrated by the structural integrity after 10 min of ultrasonic treatment and stable separation efficiency over 120 h of continuous filtration. With enhanced surface hydrophilicity and negative charge as well as dense membrane pores, the novel membrane also exhibited more superior anti-fouling performance compared to conventional lamellar and PA membranes, further manifesting advantages for practical applications. This work provides a promising solution for developing high-performance membranes tailored specifically for efficient PFAS removal, addressing a critical need in water treatment.


Assuntos
Membranas Artificiais , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Purificação da Água/métodos , Estruturas Metalorgânicas/química , Fluorocarbonos/química , Adsorção , Nylons/química
15.
Adv Mater ; 36(40): e2408243, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39188202

RESUMO

Thin polymer films (TPFs) are indispensable elements in numerous technologies ranging from liquid encapsulation to biotechnology to electronics. However, their production typically relies on wet chemistry involving organic solvents or chemical vapor deposition, necessitating elaborate equipment and often harsh conditions. Here, an eco-friendly, fast, and facile synthesis of water-templated interfacial polymers based on cyanoacrylates (superglues, CAs) that yield thin films with tailored properties is demonstrated. Specifically, by exposing a cationic surfactant-laden water surface to cyanoacrylate vapors, surfactant-modulated anionic polymerization produces a manipulable thin polymer film with a thickness growth rate of 8 nm min-1. Furthermore, the shape and color of the film are precisely controlled by the polymerization kinetics, wetting conditions, and/or exposure to patterned light. Using various interfaces as templates for film growth, including the free surface of drops and soap bubbles, the developed method advantageously enables in situ packaging of chemical and biological cargos in liquid phase as well as the encapsulation of gases within solidified bubbles. Simple, versatile, and biocompatible, this technology constitutes a potent platform for programmable coating and soft/smart encapsulation of fluids.

16.
Nano Lett ; 24(33): 10169-10176, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109989

RESUMO

Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.

17.
ACS Appl Mater Interfaces ; 16(33): 44094-44104, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39113176

RESUMO

Tissue-inspired layered structural hydrogel has attracted increasing attention in artificial muscle, wound healing, wearable electronics, and soft robots. Despite numerous efforts being devoted to developing various layered hydrogels, the rapid and efficient preparation of layered hydrogels remains challenging. Herein, inspired by the self-growth concept of living organisms, an interfacial catalytic self-growth strategy based on catechol chemistry-mediated self-catalytic system of preparing layered hydrogels is demonstrated. Typically, the tannic acid-metal ion (e.g., TA-Fe3+) complex embedded in the hydrogel substrate would catalytically trigger rapid solid-liquid interfacial polymerization to grow the hydrogel layer without bulk solution polymerization. The self-growth process can be finely controlled by changing the growth time, the molar ratio of Fe3+/TA, and so on. The strategy is applicable to prepare various layered hydrogels as well as complex layered hydrogel patterns, allowing the customization of the physicochemical properties of the hydrogel. In addition, the self-adhesive layered hydrogel was prepared and can be utilized as a wearable strain sensor to monitor physiological activities and human motions. The demonstrated interfacial catalytic self-growth strategy will provide a route to design and fabricate layered hydrogel materials.


Assuntos
Catecóis , Hidrogéis , Taninos , Hidrogéis/química , Hidrogéis/síntese química , Catecóis/química , Catálise , Taninos/química , Humanos , Dispositivos Eletrônicos Vestíveis , Materiais Biomiméticos/química
18.
ACS Appl Mater Interfaces ; 16(28): 37197-37211, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959422

RESUMO

In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.

19.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847451

RESUMO

Nanofiltration membranes with both high water permeance and selectivity are perpetually studied because of their applications in water purification. However, these two critical attributes are considered to be mutually exclusive. Here, we introduce a polar solvent, dichloromethane, in place of the apolar hexane used for decades as the organic phase for membrane interfacial polymerization synthesis to solve this dilemma. When a polar solvent as the organic phase is combined with a solvent-resistant aramid nanofibrous hydrogel film as the water phase, monomer enrichment in the reaction zone leads to a polyamide nanofiltration membrane with densely distributed nanobubble features, enhanced nanoporosity, and a loosened backbone. Benefiting from these structural features, the resulting membrane exhibits superior properties with a combination of high water permeance (52.7 L m-2 h-1 bar-1) and selectivity (water/Na2SO4, 36 bar-1; NaCl/Na2SO4, 357 bar-1), outperforming traditional nanofiltration membranes. We envision that this novel technology involving polar solvent systems and the water phase of nanofibrous hydrogel would provide new opportunities for membrane development for environmental engineering.

20.
Environ Sci Technol ; 58(26): 11855-11863, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875312

RESUMO

Polyamide (PA)-based nanofiltration (NF) membranes have demonstrated extensive applications for a sustainable water-energy-environment nexus. A rational control of interfacial polymerization (IP) is highly efficacious to enhance NF separation performance yet remains a technical challenge. Herein, we proposed a regulation strategy of constructing amphiphilic molybdenum disulfide/cetyltrimethylammonium bromide interlayer atop the Kevlar hydrogel substrate. The amphiphilic nanosheet interlayered NF membrane exhibited a crumpled PA surface with an elevated cross-linking degree of 76.9%, leading to an excellent water permeance (16.8 L m-2 h-1 bar-1) and an impressive Na2SO4 rejection (99.1%). Meanwhile, the selectivity coefficient of Na2SO4/NaCl of the optimized TFC membrane reached 91, surpassing those of the recently reported NF membranes. Moreover, the optimized membrane exhibited a desirable rejection of over 90% against Mn2+ and Cu2+ in actual textile wastewater. Importantly, the underlying NF membrane formation mechanism was elucidated via both experiments and molecular simulations. The synchronous control of mass and heat transfer of IP process offers a new methodology for the state-of-the-art membrane fabrication, which opens more avenues in softening of brackish water and purification of industrial wastewater containing heavy metal ions.


Assuntos
Membranas Artificiais , Polimerização , Purificação da Água , Purificação da Água/métodos , Nanoestruturas/química , Molibdênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA