Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Heliyon ; 10(11): e31924, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841435

RESUMO

Small interference RNA (siRNA) is a class of short double-stranded RNA molecules that cause mRNA degradation through an RNA interference mechanism and is a promising therapeutic modality. RBD1016 is a siRNA drug in clinical development for the treatment of chronic Hepatitis B Virus (HBV) infection, which contains a conjugated with N-acetylglucosamine moiety that can facilitate its hepatic delivery. We aimed to construct a semi-mechanistic model of RBD1016 in pre-clinical animals, to elucidate the pharmacokinetic/pharmacodynamic (PK/PD) profiles in mice and PK profiles in monkeys, which can lay the foundation for potential future translation of RBD1016 PK and PD from the pre-clinical stage to the clinic stage. The proposed semi-mechanistic PK/PD model fitted PK and PD data in HBV transgenic mice well and described plasma and liver concentrations in the monkeys well. The simulation results showed that our model has a reasonable predictive ability for Hepatitis B surface antigen (HBsAg) levels after multiple dosing in mice. Further PK and PD data for RBD1016, including clinical data, will assist in refining the model presented here. Our current effort focused on model building for RBD1016, we anticipate that the model could apply to other GalNAc-siRNA drugs.

2.
Curr Gene Ther ; 24(1): 6-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37710997

RESUMO

Neuromuscular diseases are severe disorders affecting the peripheral nervous system, usually driving to death in a limited time. Many new drugs, through RNA-interference technology, are revolutionizing the prognosis and quality of life for these patients. Nevertheless, given the increased life expectancy, some new issues and phenotypes are expected to be revealed. In the transthyretin-mediated hereditary amyloidosis (ATTR-v, "v" for "variant"), the RNA interference was demonstrated to effectively reduce the hepatic synthesis of transthyretin, with a significant increase in disease progression in terms of polyneuropathy and cardiomyopathy. The increased life expectancy could promote the involvement of organs where the extra-hepatic transthyretin is deposited, such as the brain and eye, which are probably not targeted by the available treatments. All these issues are discussed in this editorial.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Interferência de RNA , Pré-Albumina/genética , Qualidade de Vida , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/terapia
3.
Eur J Clin Invest ; 53(10): e14039, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309221

RESUMO

BACKGROUND: Small interference RNA (siRNA) has emerged as the most desired method for researchers and clinicians who wish to silence a specific gene of interest and has been extensively developed as a therapeutic agent. This review points to collecting all clinical trials on siRNA and understanding its benefits, pharmacokinetics and safety by reading articles published in the last 5 years. MATERIALS AND METHODS: Searching in the PubMed database using 'siRNA' and 'in vivo' with limits to articles published in the previous 5 years, article type 'clinical trials' and language 'English' to acquire papers on in vivo studies on siRNA approaches. Features of siRNA clinical trials registered at https://clinicaltrials.gov/ were analysed. RESULTS: So far, 55 clinical studies have been published on siRNA. Many published clinical trials on siRNA showed tolerability, safety and effectiveness in treating cancers like breast, lung, colon, and other organs and other diseases like viral infections and hereditary diseases. Many different routes of administration can silence many genes at the same time. Limitations and uncertainties associated with siRNA treatment include the effectiveness of cellular uptake, precise targeting of the intended tissue or cell and prompt elimination from the body. CONCLUSIONS: The siRNA or RNAi method will be one of the most critical and influential techniques to fight against many different diseases. Although the RNAi approach has certain advantages, it also has limitations concerning clinical applications. Overcoming these limitations remains a daunting challenge.


Assuntos
Neoplasias , Viroses , Humanos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Pulmão , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Viroses/genética
4.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36558924

RESUMO

Temporal lobe epilepsy (TLE) is the most prevalent and treatment-refractory type of epilepsy. Among the different mechanisms associated with epileptogenesis, overstimulation of glutamatergic neurotransmission has been associated with the onset and progression of seizures in TLE. Experimental evidence indicates that blocking the N-methyl-D-aspartate (NMDA) receptor or suppressing the expression of its subunit, mainly GluN1, may be effective in preventing epileptic seizures. Small interfering RNA (siRNA) has received attention as a potential therapeutic tool due to the inhibition of gene expression in some diseases. The present work evaluated the potential silencing effect of intranasal administration of an siRNA conjugate against the GluN1 subunit in animals submitted to the pilocarpine model of epilepsy. The results showed that the siRNA conjugate transfection system silences the GluN1 subunit in the hippocampus of rats when administered intranasally. As demonstrated by the RT-qPCR and Western blotting approaches, the silencing of GluN1 was specific for this subunit without affecting the amount of mRNA for other subunits. Silencing increased the latency time for the first tonic-clonic seizure when compared to controls. The overlapping of findings and the validation of the intranasal route as a pharmacological route of siRNA targeting the GluN1 subunit give the work a significant biotechnological interest.

5.
Viruses ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423109

RESUMO

Insect-specific virus (ISV) is one of the most promising agents for the biological control of insects, which is abundantly distributed in hematophagous insects. However, few ISVs have been reported in Riptortus pedestris (Fabricius), one of the major pests threatening soybeans and causing great losses in yield and quality. In this work, field Riptortus pedestris was collected from six soybean-producing regions in China, and their virome was analyzed with the metatranscriptomic approach. Altogether, seven new insect RNA viruses were identified, three of which had complete RNA-dependent RNA polymerase (RdRp) and nearly full-length genome sequences, which were named Riptortus pedestris alphadrosrha-like virus 1 (RpALv1), Riptortus pedestris alphadrosrha-like virus 2 (RpALv2) and Riptortus pedestris almendra-like virus (RiALv). The three identified novel ISVs belonged to the family Rhabdoviridae, and phylogenetic tree analysis indicated that they were clustered into new distinct clades. Interestingly, the analysis of virus-derived small-interfering RNAs (vsiRNAs) indicated that only RiALv-derived siRNAs exhibited 22 nt length preference, whereas no clear 21 or 22 nt peaks were observed for RpALv1 and RpALv2, suggesting the complexity of siRNA-based antiviral immunity in R. pedestris. In conclusion, this study contributes to a better understanding of the microenvironment in R. pedestris and provides viral information for the development of potential soybean insect-specific biocontrol agents.


Assuntos
Heterópteros , Vírus de Insetos , Vírus de RNA , Animais , Vírus de Insetos/genética , Filogenia , Heterópteros/genética , Vírus de RNA/genética , Glycine max
6.
J Appl Microbiol ; 133(5): 2877-2892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35892194

RESUMO

Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause.


Assuntos
Produtos Agrícolas , Ecossistema , Estados Unidos , Humanos , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , RNA , Solo , Água/farmacologia
7.
J Control Release ; 342: 228-240, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016917

RESUMO

RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055190

RESUMO

Hydroxyproline is one of the most prevalent amino acids in animal proteins. It is not a genetically encoded amino acid, but, rather, it is produced by the post-translational modification of proline in collagen, and a few other proteins, by prolyl hydroxylase enzymes. Although this post-translational modification occurs in a limited number of proteins, its biological significance cannot be overestimated. Considering that hydroxyproline cannot be re-incorporated into pro-collagen during translation, it should be catabolized following protein degradation. A cascade of reactions leads to production of two deleterious intermediates: glyoxylate and hydrogen peroxide, which need to be immediately converted. As a result, the enzymes involved in hydroxyproline catabolism are located in specific compartments: mitochondria and peroxisomes. The particular distribution of catabolic enzymes in these compartments, in different species, depends on their dietary habits. Disturbances in hydroxyproline catabolism, due to genetic aberrations, may lead to a severe disease (primary hyperoxaluria), which often impairs kidney function. The basis of this condition is accumulation of glyoxylate and its conversion to oxalate. Since calcium oxalate is insoluble, children with this rare inherited disorder suffer from progressive kidney damage. This condition has been nearly incurable until recently, as significant advances in substrate reduction therapy using small interference RNA led to a breakthrough in primary hyperoxaluria type 1 treatment.


Assuntos
Hidroxiprolina/metabolismo , Hiperoxalúria Primária/genética , RNA Interferente Pequeno/farmacologia , Animais , Evolução Molecular , Predisposição Genética para Doença , Glioxilatos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , RNA Interferente Pequeno/uso terapêutico
9.
Genes (Basel) ; 13(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052449

RESUMO

The recent advances in nucleic acid therapeutics demonstrate the potential to treat hereditary neurological disorders by targeting their causative genes. Spinal and bulbar muscular atrophy (SBMA) is an X-linked and adult-onset neurodegenerative disorder caused by the expansion of trinucleotide cytosine-adenine-guanine repeats, which encodes a polyglutamine tract in the androgen receptor gene. SBMA belongs to the family of polyglutamine diseases, in which the use of nucleic acids for silencing a disease-causing gene, such as antisense oligonucleotides and small interfering RNAs, has been intensively studied in animal models and clinical trials. A unique feature of SBMA is that both motor neuron and skeletal muscle pathology contribute to disease manifestations, including progressive muscle weakness and atrophy. As both motor neurons and skeletal muscles can be therapeutic targets in SBMA, nucleic acid-based approaches for other motor neuron diseases and myopathies may further lead to the development of a treatment for SBMA. Here, we review studies of nucleic acid-based therapeutic approaches in SBMA and related neurological disorders and discuss current limitations and perspectives to apply these approaches to patients with SBMA.


Assuntos
Atrofia Bulboespinal Ligada ao X/terapia , Doenças do Sistema Nervoso/terapia , Oligonucleotídeos Antissenso/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/patologia , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia
10.
Acta Pharm Sin B ; 11(9): 2726-2737, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589393

RESUMO

Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell-extracellular matrix and cell-cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.

11.
Int J Radiat Biol ; 97(11): 1569-1577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34402389

RESUMO

PURPOSE: Ovarian cancer is one of the most common gynecological cancers in women with a low 5-year survival rate. Evaluation of hyaluronic acid-binding protein 1 (HABP1) level can provide important information for the diagnosis and treatment of ovarian cancer. In this study, we designed a novel HABP1 probe based on 99mTc-radiolabeled small-interference RNA (siRNA) for detecting HABP1 expression noninvasively in vivo, thereby providing a new method for its diagnosis and treatment. METHODS: A specific siHABP1 was selected because of its targetability and silencing effect. A negative control siRNA (NCsiRNA) with no homology with the human genome was used. SiHABP1 and NCsiRNA were radiolabeled with 99mTc using the bifunctional chelating agent hydrazinonicotinamide (HYNIC). The radiochemical purity and in vitro stability of the probe were determined by HPLC. The binding activity was measured by western blotting (WB) and RT-PCR. The HABP1-overexpressing human ovarian cancer cell line HO-8910 was used for cell uptake experiments, which were performed with or without transfection and measured with a gamma counter. HO8910-bearing mice were imaged at 1, 4, and 10 h, and biodistribution analysis was performed at 1, 4, 6, and 10 h after injection of 99mTc-HYNIC-siRNA. RESULTS: 99mTc-HYNIC-siHABP1 had high radiochemical purity and good in vitro stability, and showed the same binding capacity and silencing effect as siHABP1. SPECT imaging showed that tumors were clearly visualized at 10 h after injection of 99mTc-HYNIC-siHABP1 but not after 99mTc-HYNIC-NCsiRNA, implying specific binding. The biodistribution results were consistent with those of SPECT imaging. CONCLUSIONS: We showed that 99mTc-HYNIC-siHABP1 is a feasible probe for the noninvasive visualization of HABP1 expression in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Proteínas Mitocondriais , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Compostos Radiofarmacêuticos , Distribuição Tecidual
12.
J Card Fail ; 27(7): 796-807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865967

RESUMO

BACKGROUND: Cardiac thyrotropin-releasing hormone (TRH) is a tripeptide with still unknown functions. We demonstrated that the left ventricle (LV) TRH system is hyperactivated in spontaneously hypertensive rats and its inhibition prevented cardiac hypertrophy and fibrosis. Therefore, we evaluated whether in vivo cardiac TRH inhibition could improve myocardial function and attenuate ventricular remodeling in a rat model of myocardial infarction (MI). METHODS AND RESULTS: In Wistar rats, MI was induced by a permanent left anterior descending coronary artery ligation. A coronary injection of a specific small interfering RNA against TRH was applied simultaneously. The control group received a scrambled small interfering RNA. Cardiac remodeling variables were evaluated one week later. In MI rats, TRH inhibition decreased LV end-diastolic (1.049 ± 0.102 mL vs 1.339 ± 0.102 mL, P < .05), and end-systolic volumes (0.282 ± 0.043 mL vs 0.515 ± 0.037 mL, P < .001), and increased LV ejection fraction (71.89 ± 2.80% vs 65.69 ± 2.85%, P < .05). Although both MI groups presented similar infarct size, small interfering RNA against TRH treatment attenuated the cardiac hypertrophy index and myocardial interstitial collagen deposition in the peri-infarct myocardium. These effects were accompanied by attenuation in the rise of transforming growth factor-ß, collagen I, and collagen III, as well as the fetal genes (atrial natriuretic peptide, B-type natriuretic peptide, and beta myosin heavy chain) expression in the peri-infarct region. In addition, the expression of Hif1α and vascular endothelial growth factor significantly increased compared with all groups. CONCLUSIONS: Cardiac TRH inhibition improves LV systolic function and attenuates ventricular remodeling after MI. These novel findings support the idea that TRH inhibition may serve as a new therapeutic strategy against the progression of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Hormônio Liberador de Tireotropina/antagonistas & inibidores , Animais , Cardiomegalia , Fibrose , Insuficiência Cardíaca/patologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miocárdio/patologia , RNA Interferente Pequeno , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Remodelação Ventricular
13.
Methods Mol Biol ; 2282: 329-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928583

RESUMO

Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.


Assuntos
Peptídeos Penetradores de Células/química , Interferência de RNA , RNA Interferente Pequeno/genética , Transfecção , Animais , Linhagem Celular , Peptídeos Penetradores de Células/metabolismo , Humanos , Nanopartículas , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
14.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652577

RESUMO

Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells' viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.


Assuntos
Inativação Gênica , Técnicas de Transferência de Genes , Vírus da Hepatite B , Plasmídeos , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Interferente Pequeno , Neoplasias do Colo do Útero , Feminino , Células HeLa , Humanos , Plasmídeos/genética , Plasmídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
15.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33617633

RESUMO

Plant long non-coding RNAs (lncRNAs) function in diverse biological processes, and lncRNA expression is under epigenetic regulation, including by cytosine DNA methylation. However, it remains unclear whether 5-methylcytosine (5mC) plays a similar role in different sequence contexts (CG, CHG, and CHH). In this study, we characterized and compared the profiles of genome-wide lncRNA profiles (including long intergenic non-coding RNAs [lincRNAs] and long noncoding natural antisense transcripts [lncNATs]) of a null mutant of the rice DNA methyltransferase 1, OsMET1-2 (designated OsMET1-2-/-) and its isogenic wild type (OsMET1-2+/+). The En/Spm transposable element (TE) family, which was heavily methylated in OsMET1-2+/+, was transcriptionally de-repressed in OsMET1-2-/- due to genome-wide erasure of CG methylation, and this led to abundant production of specific lncRNAs. In addition, RdDM-mediated CHH hypermethylation was increased in the 5'-upstream genomic regions of lncRNAs in OsMET1-2-/-. The positive correlation between the expression of lincRNAs and that of their proximal protein-coding genes was also analyzed. Our study shows that CG methylation negatively regulates the TE-related expression of lncRNA and demonstrates that CHH methylation is also involved in the regulation of lncRNA expression.


Assuntos
Oryza , RNA Longo não Codificante , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Metiltransferases/genética , Mutação , Oryza/genética , RNA Longo não Codificante/genética
16.
Saudi J Biol Sci ; 28(1): 1109-1122, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424405

RESUMO

Being the most conserved region of all hepatitis C virus (HCV) genotypes and sub-genotypes, the 5' untranslated region (5' UTR) of HCV genome signifies it's importance as a potential target for anti-mRNA based treatment strategies like RNA interference. The advent and approval of first small interference RNA (siRNA) -based treatment of hereditary transthyretin-mediated amyloidosis for clinical use has raised the hopes to test this approach against highly susceptible viruses like HCV. We investigated the antiviral potential of consensus siRNAs targeted to stem-loops (SLs) II and III nucleotide motifs of internal ribosome entry site (IRES) structure within 5' UTR of HCV sub-genotype 4a isolates from the Saudi population. siRNA inhibitory effects on viral replication and translation of full-length HCV genome were determined in a competent, persistent, and reproducible Huh-7 cell culture system maintained for one month. Maximal inhibition of RNA transcript levels of HCV-IRES clones and silencing of viral replication and translation of full-length virus genome was demonstrated by siRNAs targeted to SL-III nucleotide motifs of IRES in Huh-7 cells. siRNA Usi-169 decreased 5' UTR RNA transcript levels of HCV-IRES clones up to 75% (P < 0.001) at 24 h post-transfection and 80% (P < 0.001) at 48 h treatment in Huh-7 cells. 5' UTR-tagged GFP protein expression was significantly decreased from 70 to 80% in Huh-7 cells co-transfected with constructed vectors (i.e. pCR3.1/GFP/5' UTR) and siRNA Usi-169 at 24 h and 48 h time-span. Viral replication was inhibited by more than 90% (P < 0.001) and HCV core (C) and hypervariable envelope glycoproteins (E1 and E2) expression was also significantly degraded by intracytoplasmic siRNA Usi-169 activity in persistent Huh-7 cell culture system. The findings unveil that siRNAs targeted to 5' UTR-IRES of HCV sub-genotype 4a Saudi isolates show potent silencing of HCV replication and blocking of viral translation in a persistent in-vitro Huh-7 tissue culture system. Furthermore, we also elucidated that siRNA silencing of viral mRNA not only inhibits viral replication but also blocks viral translation. The results suggest that siRNA potent antiviral activity should be considered as an effective anti-mRNA based treatment strategies for further in-vivo investigations against less studied and harder-to-treat HCV sub-genotype 4a isolates in Saudi Arabia.

17.
J Recept Signal Transduct Res ; 41(5): 504-510, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32998602

RESUMO

BACKGROUND: Cell division control (CDC) 42 has been involved in the regulation of diverse cancers. Macrophage recruitment plays an important role in the pathogenesis and development of tumor. However, it remains unclear whether CDC42 contributes to macrophage recruitment and lung tumorigenesis in vivo. METHODS: Small interference RNA (siRNA) was used to knock down CDC42 in the Lewis lung carcinoma (LLC)1. The invasion capability of CDC42 knockdown LLC1 cells was evaluated. LLC1 cells with CDC42 targeted small hairpin RNA (shRNA) were inoculated into C57BL/6 mice to establish the tumor-bearing animal model Tumor size and metastasis related proteins were measured. In addition, the invasion of macrophages in the tumor site as well as macrophage chemokine were also determined in the model. RESULTS: The capacity of invasion and metastasis of LLC1 cells significantly decreased when CDC42 was knocked down. When inoculated with CDC42 knockdown LLC1 cells in vivo, the tumor size and metastasis related proteins levels both decreased. The invasion capacity of macrophages and the associated macrophage chemokine were also significantly down-regulated. CONCLUSION: Our data suggest that the inhibition of CDC42 expression in lung cancer cells can significantly prevent the pathogenesis and development of tumor in an allograft tumor model in vivo, which might provide a novel therapeutic target and potential strategy for lung cancer treatment in the future.


Assuntos
Carcinogênese/patologia , Carcinoma Pulmonar de Lewis/prevenção & controle , Modelos Animais de Doenças , Macrófagos/imunologia , RNA Interferente Pequeno/genética , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Apoptose , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína cdc42 de Ligação ao GTP/genética
18.
Am J Transl Res ; 12(11): 7420-7429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312378

RESUMO

Fibroblasts migrating to peritoneum injuries play an important role in the development of postoperative peritoneal adhesions due to the excessive synthesis and deposition of extracellular matrix (ECM). This effect is mainly induced by the transforming growth factor-ß (TGF-ß). Studies indicate that elevated TGF-ß1 levels and TGF-ß1/Smad signaling are both implicated in the formation of peritoneal adhesions. To confirm the effect of TGF-ß1/Smad signaling interference in regulating excessive ECM synthesis, a total of four different R-Smad-targeting small interference RNA (siRNA) duplexes (Smad2-500, Smad2-956, Smad3-378, Smad3-1385) were tested in this study using a TGF-ß1-stimulated adhesion tissue fibroblasts (ATFs) cell model. The in vitro assessments show that all proposed siRNAs are capable of significantly downregulating the mRNA and protein levels of Smad2 and Smad3 in ATFs. They also inhibit the phosphorylation of both Smads, which confirms their effect in blocking the TGF-ß1/Smad signaling pathway. Moreover, the siRNA duplexes can appreciably lower the elevated levels of fibronectin and collagen 3 alpha 1 (COL3A1) in TGF-ß1-stimulated ATFs, and the Smad3-378 siRNA can actually restore both molecules (fibronectin and COL3A1) to normal levels. Therefore, the Smad3-378 siRNA is suitable for both adhesion prevention and wound healing. Overall, our results indicate that postoperative adhesion prophylaxis may be achieved by temporarily blocking TGF-ß1/Smad signaling transduction.

19.
Biol Pharm Bull ; 43(11): 1617-1625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132308

RESUMO

Gene and nucleic acid-based medication is an ultimate strategy in the field of personalized medicine. A gene or short interference RNA (siRNA) molecule needs to be delivered to the appropriate organelle (i.e., nucleus and cytoplasm, respectively). We recently focused on improving the intrinsic activity of my original material (ssPalm) in terms of endosomal/lysosomal membrane destabilization activity by chemically modifying the tertiary amine structure. In parallel, I have been expanding the range of applications of ssPalms. The first application is a DNA or RNA vaccine. My crucial finding is that the vitamin E-scaffold ssPalm (ssPalmE) is highly immune-stimulative when combined with DNA. Thereafter, I redesigned the hydrophobic scaffold structure, and found that an oleic acid-scaffold ssPalm (ssPalmO) can confer anti-inflammatory characteristics. Based on this result, I further upgraded the ssPalmO, by inserting a newly designed linker with self-degradable properties.


Assuntos
DNA/administração & dosagem , Portadores de Fármacos/química , Lipídeos/química , RNA Interferente Pequeno/administração & dosagem , Vitamina E/química , Animais , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Medicina de Precisão/métodos
20.
J Control Release ; 325: 380-393, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653501

RESUMO

Rheumatoid arthritis (RA) is a common clinical inflammatory disease of the autoimmune system manifested by persistent synovitis, cartilage damage and even deformities. Despite significant progress in the clinical treatment of RA, long-term administration of anti-rheumatic drugs can cause a series of problems, including infections, gastrointestinal reactions, and abnormal liver and kidney functions. The emergence of RNA interference (RNAi) drugs has brought new hope for the treatment of RA. Designing a reasonable vector for RNAi drugs will greatly expand the application prospects of RNAi. Nanoparticles as a promising drug carrier provide reliable support for RNAi drugs. The review summarizes the pathogenesis of RA as a possible target for small interference RNA (siRNA) design. At the same time, the review also analyzes the nanoparticles used in siRNA carriers in recent years, laying the foundation and prospect for the next step in the development of intelligent nanocarriers.


Assuntos
Antirreumáticos , Artrite Reumatoide , Nanopartículas , Artrite Reumatoide/tratamento farmacológico , Humanos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA