Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445059

RESUMO

In the present study, composite materials were elaborated of mixed scrap of Mg-based casting alloys and low melting point Bi-Sn-Pb alloy by high energy ball milling, and their reactivity in NaCl solution with hydrogen release was tested. The impacts of the additive content and ball milling duration on their microstructure and hydrogen generation performance were investigated. Scanning electron microscopy (SEM) analysis revealed significant microstructural transformations of the particles during milling, and X-ray diffraction analysis (XRD) proved the formation of new intermetallic phases Mg3Bi2, Mg2Sn, and Mg2Pb. The said intermetallic phases were anticipated to act as 'microcathodes' enhancing galvanic corrosion of the base metal. The dependency of the samples' reactivity on the additive content and milling duration was determined to be nonmonotonic. For the samples with 0, 2.5, and 5 wt.% Rose alloy, ball-milling during 1 h provided the highest hydrogen generation rates and yields (as compared to 0.5 and 2 h), while in the case of the maximum 10 wt.%, the optimal time shifted to 0.5 h. The sample activated with 10 wt.% Rose alloy for 0.5 h provided the highest 'metal-to-hydrogen' yield and rapid reaction, thus overperforming those with lower additive contents and that without additives.

2.
Materials (Basel) ; 15(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500079

RESUMO

The manuscript describes the phase composition, microstructure, some physical and mechanical properties of the Ti-Al system with addition of 2 at. % Dy (TAD) and Ho (TAH) obtained by "hydride technology". Phase diagrams for Ti-Al-Dy and Ti-Al-Ho at a temperature of 1150 °C and basic properties for ternary phases Dy6Ti4Al43 and Ho6Ti4Al43 were calculated. A crystallographic database of stable and quasistable structures of the known elemental composition was created in the USPEX-SIESTA software by means of an evolutionary code. The calculations show that adding REM leads to a significant stabilizing effect in each Ti-Al-Me (Me = Dy, Ho) system without exception. It has been established that the lattice energies of AlTi3Ho and AlTi3Dy are, respectively, equal to: EAl4Ti12Dy3 = -32,877.825 eV and EAl4Ti12Dy3 = -31,227.561 eV. In the synthesized Ti49Al49Ho2 compound, the main phases include Al-Ti, Al3Ti3 and Al4Ti12Ho3 and the contributions to the theoretical intensity are equal to 44.83, 44.43 and 5.55%, respectively. Ti49Al49Dy2 is dominated by the Al-Ti, Al3Ti3 and Al4Ti12Dy phases, whose contributions are equal to 65.04, 16.88 and 11.2%, respectively. The microhardness of TAD and TAN specimens is 1.61 ± 0.08 and 1.47 ± 0.07 GPa, respectively.

3.
Nanomaterials (Basel) ; 11(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916871

RESUMO

In this study the influence of scandium on the structural and phase state of the Ti-Al alloy obtained by the method of "Hydride Technology" (HT). The Rietveld method has allowed for determining the content of basic phases of the 49at.%Ti-49at.%Al-2at.%Sc system. By means of the methods of transmission electron microscopy (TEM) and X-ray spectral microanalysis, it has been established that scandium additives into the Ti-Al system result in the change of the quantitative content of phases in local regions of the structure. The Ti2Al5 phase has been found, and Ti2Al has been absent. In the morphology of substructures Ti-Al and Ti-Al-Sc there are lamellar structures or lamellae; the peculiarities of the distribution, fraction and size of which are influenced by scandium additives. The average width of Al-rich lamellae has been 0.85 µm, which is four times greater than that for the Ti-Al system (0.21 µm). For Ti-rich lamellae of the sample of the Ti-Al-Sc alloy, the average width of the lamellae has been 0.54 µm, and for Ti-Al it has been 0.34 µm. Based on the obtained data, a scheme of the distribution of phases in the composition of the Ti-Al-Sc alloy in the lamellar structures has been proposed. It has been established that in the Ti-Al-Sc system there is growth of the near-surface strength relative to Ti-Al. In this way, the microhardness of the Ti-Al-Sc alloy has amounted to 1.7 GPa, that is of the Ti-Al alloy which is 1.2 GPa.

4.
Acta Crystallogr C Struct Chem ; 71(Pt 11): 996-1000, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524174

RESUMO

The crystal structure of Gd3Ni7Al14 (trigadolinium heptanickel tetradecaaluminide) belongs to a family of two-layer structures and can be described as an assembly of interpenetrating centred straight prisms. For the Ni atoms, trigonal prisms (Al4Gd2 and Al6) are observed, the Al atoms are inside tetragonal (Ni2Al2Gd4, Ni2Al4Gd2, Al4Gd4, Ni4Al4 and Al8) and pentagonal (Ni4Al6 and Al10) prisms, while the Gd atoms are at the centres of pentagonal (Ni4Al6) and hexagonal (Ni4Al8) prisms. In each case, the true coordination polyhedron is a capped prism, also including atoms from the same layer. The structural features of Gd3Ni7Al14 are similar to those of the intermetallides PrNi2Al3 and ZrNiAl. In all these structures, Ni-centred trigonal prisms form infinite columns via common triangular faces. The columns share prism edges and form a three-dimensional framework with six-membered rings in the (001) plane in the case of the PrNi2Al3 and ZrNiAl types. In the case of Gd3Ni7Al14, six-membered rings are also observed, but only two-thirds of the rings are interconnected via prism edges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA