Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998207

RESUMO

The cross-section of various substrate-deposit metal pairs obtained with a laser-assisted additive manufacturing process has been studied by observing the composition profile with energy-dispersive spectroscopy (EDS). The EDS composition profiles observed with a sufficiently high data acquisition time revealed that the composition profile is asymmetric. By scanning toward the growth direction, a sudden composition variation was observed, which was followed by a slow decay. The character of the composition profile was the same for a number of substrate-deposit pairs, and similar trends were found in various earlier publications as well. A mathematical model for the composition variation is suggested based on the assumption that a spontaneous homogenization process takes place in the intermixing (dilution) zone of the remelted top layer of the substrate. The equation obtained makes it possible to quantitatively describe the composition profile of each component that exhibits a concentration difference between the substrate and the deposit, provided that the mole fraction difference much exceeds the scattering of the data measured. The suggested model has also been applied successfully to composition profiles published in other works, hence exhibiting general relevance. Since the variation in some physical parameters (such as hardness) along the growth direction has been reported to follow the same pattern, it is assumed that the root cause in these cases may also be the composition variation.

2.
Adv Sci (Weinh) ; : e2402753, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973332

RESUMO

Magnetic topological insulators (TIs) herald a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBi2Te4)(Bi2Te3)n layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this material platform is enabled by manganese-pnictogen intermixing, whose amounts and distribution patterns are controlled by synthetic conditions. Here, nuclear magnetic resonance and muon spin spectroscopy, sensitive local probe techniques, are employed to scrutinize the impact of the intermixing on the magnetic properties of (MnBi2Te4)(Bi2Te3)n and MnSb2Te4. The measurements not only confirm the opposite alignment between the Mn magnetic moments on native sites and antisites in the ground state of MnSb2Te4, but for the first time directly show the same alignment in (MnBi2Te4)(Bi2Te3)n with n = 0, 1 and 2. Moreover, for all compounds, the static magnetic moment of the Mn antisite sublattice is found to disappear well below the intrinsic magnetic transition temperature, leaving a homogeneous magnetic structure undisturbed by the intermixing. The findings provide a microscopic understanding of the crucial role played by Mn-Bi intermixing in (MnBi2Te4)(Bi2Te3)n and offer pathways to optimizing the magnetic gap in its surface states.

3.
ACS Nano ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083699

RESUMO

Utilization of core-shell rather than monometallic nanocrystals (NCs) facilitates fine-tuning of NC properties for applications. However, compositional evolution via intermixing can degrade these properties prompting recent experimental studies. We develop an atomistic-level stochastic model for vacancy-mediated intermixing exploiting a formalism which allows incorporation at an ab initio density functional theory level of not just the thermodynamics of vacancy formation, but also relevant diffusion barriers for a vast number of possible local environments (in the core and in the shell, at the interface, and in the intermixed phase). This facilitates a predictive treatment and comprehensive understanding of intermixing on the relevant time scale (e.g., 101-103 s). In contrast, previous modeling at the atomistic level utilized only unrealistic generic prescriptions of barriers or employed simplified continuum treatments. For Au@Ag octahedral core-cubic shell NCs, our modeling not only captures the experimentally observed rate or time scale for intermixing of ∼100 s at 450 °C for 60 nm NCs, but also elucidates the underlying rate controlling processes and the effective intermixing barrier.

4.
Clin Biochem ; 127-128: 110763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615787

RESUMO

OBJECTIVES: Contamination with intravenous (IV) fluids is a common cause of specimen rejection or erroneous results in hospitalized patients. Identification of contaminated samples can be difficult. Common measures such as failed delta checks may not be adequately sensitive nor specific. This study aimed to determine detection criteria using commonly ordered tests to identify IV fluid contamination and validate the use of these criteria. METHODS: Confirmed contaminated and non-contaminated samples were used to identify patterns in laboratory results to develop criteria to detect IV fluid contamination. The proposed criteria were implemented at a tertiary care hospital laboratory to assess performance prospectively for 6 months, and applied to retrospective chemistry results from 3 hospitals and 1 community lab to determine feasibility and flagging rates. The algorithm was also tested at an external institution for transferability. RESULTS: The proposed algorithm had a positive predictive value of 92 %, negative predictive value of 91 % and overall agreement of 92 % when two or more criteria are met (n = 214). The flagging rates were 0.03 % to 0.07 % for hospital and 0.003 % for community laboratories. CONCLUSIONS: The proposed algorithm identified true contamination with low false flagging rates in tertiary care urban hospital laboratories. Retrospective and prospective analysis suggest the algorithm is suitable for implementation in clinical laboratories to identify samples with possible IV fluid contamination for further investigation.


Assuntos
Algoritmos , Humanos , Estudos Retrospectivos , Laboratórios Clínicos , Estudos Prospectivos , Manejo de Espécimes/métodos , Manejo de Espécimes/normas
5.
Discov Nano ; 18(1): 134, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904017

RESUMO

Photonic-crystal surface-emitting lasers have many promising properties over traditional semiconductor lasers and are regarded as the next-generation laser sources. However, the minimum achievable lasing threshold of PCSELs is still several times larger than that of VCSELs, and limiting its applications especially if the required power is small. Here, we propose a new design that reduces the gain region in the lateral plane by using selective quantum-well intermixing to reduce the threshold current of PCSELs. By performing theoretical calculations, we confirmed that the threshold current can be lowered by a factor of two to three while keeping the PCSEL's advantage of small divergence angle.

6.
Materials (Basel) ; 16(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834664

RESUMO

Laser powder bed fusion (LPBF) is a popular additive manufacturing (AM) technique that has demonstrated the capability to produce sophisticated engineering components. This work reports the crack-free fabrication of an SS316L/IN718 bimetallic structure via LPBF, along with compositional redistribution, phase transformations and microstructural development, and nanohardness variations. Constituent intermixing after LPBF was quantitatively estimated using thermo-kinetic coefficients of mass transport and compared with the diffusivity of Ni in the austenitic Fe-Ni system.

7.
Materials (Basel) ; 16(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687761

RESUMO

Quantum-well intermixing (QWI) technology is commonly considered as an effective methodology to tune the post-growth bandgap energy of semiconductor composites for electronic applications in diode lasers and photonic integrated devices. However, the specific influencing mechanism of the interfacial strain introduced by the dielectric-layer-modulated multiple quantum well (MQW) structures on the photoluminescence (PL) property and interfacial quality still remains unclear. Therefore, in the present study, different thicknesses of SiO2-layer samples were coated and then annealed under high temperature to introduce interfacial strain and enhance atomic interdiffusion at the barrier-well interfaces. Based on the optical and microstructural experimental test results, it was found that the SiO2 capping thickness played a positive role in driving the blueshift of the PL peak, leading to a widely tunable PL emission for post-growth MQWs. After annealing, the blueshift in the InGaAs/AlGaAs MQW structures was found to increase with increased thickness of the SiO2 layer, and the largest blueshift of 30 eV was obtained in the sample covered with a 600 nm thick SiO2 layer that was annealed at 850 °C for 180 s. Additionally, significant well-width fluctuations were observed at the MQW interface after intermixing, due to the interfacial strain introduced by the thermal mismatch between SiO2 and GaAs, which enhanced the inhomogeneous diffusion rate of interfacial atoms. Thus, it can be demonstrated that the introduction of appropriate interfacial strain in the QWI process is of great significance for the regulation of MQW band structure as well as the control of interfacial quality.

8.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513110

RESUMO

Quantum dot (QD)-based RGB micro light-emitting diode (µ-LED) technology shows immense potential for achieving full-color displays. In this study, we propose a novel structural design that combines blue and quantum well (QW)-intermixing ultraviolet (UV)-hybrid µ-LEDs to achieve high color-conversion efficiency (CCE). For the first time, the impact of various combinations of QD and TiO2 concentrations, as well as thickness variations on photoluminescence efficiency (PLQY), has been systematically examined through simulation. High-efficiency color-conversion layer (CCL) have been successfully fabricated as a result of these simulations, leading to significant savings in time and material costs. By incorporating scattering particles of TiO2 in the CCL, we successfully scatter light and disperse QDs, effectively reducing self-aggregation and greatly improving illumination uniformity. Additionally, this design significantly enhances light absorption within the QD films. To enhance device reliability, we introduce a passivation protection layer using low-temperature atomic layer deposition (ALD) technology on the CCL surface. Moreover, we achieve impressive CCE values of 96.25% and 92.91% for the red and green CCLs, respectively, by integrating a modified distributed Bragg reflector (DBR) to suppress light leakage. Our hybrid structure design, in combination with an optical simulation system, not only facilitates rapid acquisition of optimal parameters for highly uniform and efficient color conversion in µ-LED displays but also expands the color gamut to achieve 128.2% in the National Television Standards Committee (NTSC) space and 95.8% in the Rec. 2020 standard. In essence, this research outlines a promising avenue towards the development of bespoke, high-performance µ-LED displays.

9.
Sensors (Basel) ; 23(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177768

RESUMO

Magnetic sensors are key elements in many industrial, security, military, and biomedical applications. Heusler alloys are promising materials for magnetic sensor applications due to their high spin polarization and tunable magnetic properties. The dynamic field range of magnetic sensors is strongly related to the perpendicular magnetic anisotropy (PMA). By tuning the PMA, it is possible to modify the sensing direction, sensitivity and even the accuracy of the magnetic sensors. Here, we report the tuning of PMA in a Co2MnGa Heusler alloy film via argon (Ar) ion irradiation. MgO/Co2MnGa/Pd films with an initial PMA were irradiated with 30 keV 40Ar+ ions with fluences (ions·cm-2) between 1 × 1013 and 1 × 1015 Ar·cm-2, which corresponds to displacement per atom values between 0.17 and 17, estimated from Monte-Carlo-based simulations. The magneto optical and magnetization results showed that the effective anisotropy energy (Keff) decreased from ~153 kJ·m-3 for the un-irradiated film to ~14 kJ·m-3 for the 1 × 1014 Ar·cm-2 irradiated film. The reduced Keff and PMA are attributed to ion-irradiation-induced interface intermixing that decreased the interfacial anisotropy. These results demonstrate that ion irradiation is a promising technique for shaping the PMA of Co2MnGa Heusler alloy for magnetic sensor applications.

10.
ACS Appl Mater Interfaces ; 15(18): 22672-22683, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37122126

RESUMO

Over the past few decades, telluride-based chalcogenide multilayers, such as PbSeTe/PbTe, Bi2Te3/Sb2Te3, and Bi2Te3/Bi2Se3, were shown to be promising high-performance thermoelectric films. However, the stability of performance in operating environments, in particular, influenced by intermixing of the sublayers, has been studied rarely. In the present work, the nanostructure, thermal stability, and thermoelectric power factor of Sb2Te3/Ge1+xTe multilayers prepared by pulsed laser deposition are investigated by transmission electron microscopy and Seebeck coefficient/electrical conductivity measurements performed during thermal cycling. Highly textured Sb2Te3 films show p-type semiconducting behavior with superior power factor, while Ge1+xTe films exhibit n-type semiconducting behavior. The elemental mappings indicate that the as-deposited multilayers have well-defined layered structures. Upon heating to 210 °C, these layer structures are unstable against intermixing of sublayers; nanostructural changes occur on initial heating, even though the highest temperature is close to the deposition temperature. Furthermore, the diffusion is more extensive at domain boundaries leading to locally inclined structures there. The Sb2Te3 sublayers gradually dissolve into Ge1+xTe. This dissolution depends markedly on the relative Ge1+xTe film thickness. Rather, full dissolution occurs rapidly at 210 °C when the Ge1+xTe sublayer is substantially thicker than that of Sb2Te3, whereas the dissolution is very limited when the Ge1+xTe sublayer is substantially thinner. The resulting variations of the nanostructure influence the Seebeck coefficient and electrical conductivity and thus the power factor in a systematic manner. Our results shed light on a previously unreported correlation of the power factor with the nanostructural evolution of unstable telluride multilayers.

11.
ACS Appl Mater Interfaces ; 15(6): 8624-8635, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724387

RESUMO

Incorporating an intentional strain compensating InSb interface (IF) layer in InAs/GaSb type-II superlattices (T2SLs) enhances device performance. But there is a lack of studies that correlate this approach's optical and structural quality, so the mechanisms by which this improvement is achieved remain unclear. One critical issue in increasing the performance of InAs/GaSb T2SLs arises from the lattice mismatch between InAs and GaSb, leading to interfacial strain in the structure. Not only that but also, since each side of the InAs/GaSb heterosystem does not have common atoms, there is a possibility of atomic intermixing at the IFs. To address such issues, an intentional InSb interfacial layer is commonly introduced at the InAs-on-GaSb and GaSb-on-InAs IFs to compensate for the strain and the chemical mismatches. In this report, we investigate InAs/GaSb T2SLs with (Sample A) and without (Sample B) InSb IF layers emitting in the mid-wavelength infrared (MWIR) through photoluminescence (PL) and band structure simulations. The PL studies indicate that the maximum PL intensity of Sample A is 1.6 times stronger than that of Sample B. This could be attributed to the effect of migration-enhanced epitaxy (MEE) growth mode. Band structure simulations understand the impact of atomic intermixing and segregation at T2SL IFs on the bandgap energy and PL intensity. It is observed that atomic intermixing at the IFs changes the bandgap energy and significantly affects the wave function overlap and the optical property of the samples. Transmission electron microscopy (TEM) measurements reveal that the T2SL IFs in Sample A are very rough compared to sharp IFs in Sample B, indicating a high possibility of atomic intermixing and segregation. Based on these results, it is believed that high-quality heterostructure could be achieved by controlling the IFs to enhance its structural and compositional homogeneities and the optical properties of the T2SLs.

12.
Nanotechnology ; 34(14)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626806

RESUMO

Si/SiGe stacked multilayers are key elements in fabrication of gate-all-around (GAA) structures and improvement of electrical properties, with the evolution of the Si/SiGe interfaces playing a crucial role. In this work, a model is developed based on the simplified bond hyperpolarizability model (SBHM) to analysis the anisotropic reflective second harmonic generation (Ani-RSHG) on a three-period stacked Si/Si1-xGexmultilayer, which builds on Si(100) diamond structures. TheC4vsymmetry of the Si(100) structure enables the second harmonic generation (SHG) contribution from the bonds to be simplified and the effective hyperpolarizabilities of the interfacial and bulk sources to be obtained. The effective interface dipolar and bulk quadrupolar SHG hyperpolarizabilities in the Si1-xGexsample with various Ge concentration profiles are modeled by interpreting the concentration of a component element as the probability of the element occupying an atomic site. On the basis of the developed model, the Ani-RSHG spectra of the as-grown samples with various Ge ratios for each layer and the samples annealed at 850 °C and 950 °C are analyzed to inspect the change in Ge distribution and its gradient in depth. The ani-RSHG analysis on as-grown samples showed difference in Ge distribution in samples with the multi Si/SiGe structure, which is not well observed in synchrotron x-ray diffraction (XRD) spectra. For the annealed samples, the response to changes in Ge concentration and its gradient in depth reveal the Si/Si1-xGexinterface intermixing. Results of high-angle annular dark-field scanning transmission electron microscopy and energy dispersive x-ray spectroscopy agree well with the Ani-RSHG with SBHM findings. Compared with the Raman and synchrotron XRD spectra, the Ani-RSHG with SBHM simulation result demonstrates much better response to changes in compositions of the Si/Si1-xGexstacked multilayered structures, verifying the potential for characterizing the concentration distribution in stacked multilayered thin films for GAA structures.

13.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295298

RESUMO

Joining immiscible materials such as copper and stainless steel together is a significant concern due to distinct mechanical and metallurgical properties across the joint line, such as melting points, the coefficient of linear thermal expansion, and thermal conductivity. The joint properties of copper to stainless steel welds are in great demand for various mechanical components of the international thermonuclear experimental reactor, ultra-high vacuum system, plan wave linear-accelerator or linac structure, and heat exchanger. These dissimilar-metals joints offer excellent flexibility in design and production, leading to a robust structure for many cutting-edge applications. Hence, the present article reviews the copper to stainless steel joining mechanism under different solid-state processing conditions. The present understanding says that defect-free strong joints between the dissimilar metals are systematically possible. Apart from this understanding, the authors have identified and highlighted the gaps in the research exploration to date. Moreover, a sustainable methodology to achieve a desirable weld of copper to stainless steel depends on favorable processing conditions.

14.
Nano Lett ; 22(19): 7992-7999, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162104

RESUMO

One of the major obstacles to realizing spintronic devices such as MESO logic devices is the small signal magnitude used for magnetization readout, making it important to find materials with high spin-to-charge conversion efficiency. Although intermixing at the junction of two materials is a widely occurring phenomenon, its influence on material characterization and the estimation of spin-to-charge conversion efficiencies are easily neglected or underestimated. Here, we demonstrate all-electrical spin-to-charge conversion in BixSe1-x nanodevices and show how the conversion efficiency can be overestimated by tens of times depending on the adjacent metal used as a contact. We attribute this to the intermixing-induced compositional change and the properties of a polycrystal that lead to drastic changes in resistivity and spin Hall angle. Strategies to improve the spin-to-charge conversion signal in similar structures for functional devices are discussed.

15.
J Phys Condens Matter ; 34(46)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36096116

RESUMO

We use an atomistic spin model to simulate FePt-based bilayers for heat assisted magnetic recording (HAMR) devices and investigate the effect of various degrees intermixing that might arise throughout the fabrication, growth and annealing processes, as well as different interlayer exchange couplings, on HAMR magnetisation dynamics. Intermixing can impact the device functionality, but interestingly does not deteriorate the properties of the system. Our results suggest that modest intermixing can prove beneficial and yield an improvement in the magnetisation dynamics for HAMR processes, also relaxing the requirement for weak exchange coupling between the layers. Therefore, we propose that a certain intermixing across the interface could be engineered in the fabrication process to improve HAMR technology further.

16.
Nano Lett ; 22(15): 6285-6291, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876819

RESUMO

Superlattice (SL) phase change materials have shown promise to reduce the switching current and resistance drift of phase change memory (PCM). However, the effects of internal SL interfaces and intermixing on PCM performance remain unexplored, although these are essential to understand and ensure reliable memory operation. Here, using nanometer-thin layers of Ge2Sb2Te5 and Sb2Te3 in SL-PCM, we uncover that both switching current density (Jreset) and resistance drift coefficient (v) decrease as the SL period thickness is reduced (i.e., higher interface density); however, interface intermixing within the SL increases both. The signatures of distinct versus intermixed interfaces also show up in transmission electron microscopy, X-ray diffraction, and thermal conductivity measurements of our SL films. Combining the lessons learned, we simultaneously achieve low Jreset ≈ 3-4 MA/cm2 and ultralow v ≈ 0.002 in mushroom-cell SL-PCM with ∼110 nm bottom contact diameter, thus advancing SL-PCM technology for high-density storage and neuromorphic applications.


Assuntos
Condutividade Térmica , Difração de Raios X
17.
Microbiol Spectr ; 10(1): e0194421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171019

RESUMO

Microbes are social organisms that commonly live in sessile biofilms. Spatial patterns of populations within biofilms can be important determinants of community-level properties. Spatial intermixing emerging from microbial interaction is one of the best-studied characteristics of spatial patterns. The specific levels of spatial intermixing critically contribute to how the dynamics and functioning of such communities are governed. However, the precise factors that determine spatial patterns and intermixing remain unclear. Here, we investigated the spatial patterning and intermixing of an engineered synthetic consortium composed of two mutualistic Pseudomonas stutzeri strains that degrade salicylate via metabolic cross-feeding. We found that the consortium self-organizes across space to form a previously unreported spatial pattern (here referred to as a 'bubble-burst' pattern) that exhibits a low level of intermixing. Interestingly, when the genes encoding type IV pili were deleted from both strains, a highly intermixed spatial pattern developed and increased the productivity of the entire community. The intermixed pattern was maintained in a robust manner across a wide range of initial ratios between the two strains. Our findings show that the type IV pilus plays a role in mitigating spatial intermixing of different populations in surface-attached microbial communities, with consequences for governing community-level properties. These insights provide tangible clues for the engineering of synthetic microbial systems that perform highly in spatially structured environments. IMPORTANCE When growing on surfaces, multispecies microbial communities form biofilms that exhibit intriguing spatial patterns. These patterns can significantly affect the overall properties of the community, enabling otherwise impermissible metabolic functions to occur as well as driving the evolutionary and ecological processes acting on communities. The development of these patterns is affected by several drivers, including cell-cell interactions, nutrient levels, density of founding cells, and surface properties. The type IV pilus is commonly found to mediate surface-associated behaviors of microorganisms, but its role on pattern formation within microbial communities is unclear. Here, we report that in a cross-feeding consortium, the type IV pilus affects the spatial intermixing of interacting populations involved in pattern formation and ultimately influences overall community productivity and robustness. This novel insight assists our understanding of the ecological processes of surface-attached microbial communities and suggests a potential strategy for engineering high-performance synthetic microbial communities.


Assuntos
Fímbrias Bacterianas/fisiologia , Interações Microbianas , Pseudomonas stutzeri/fisiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Fímbrias Bacterianas/genética , Consórcios Microbianos , Pseudomonas stutzeri/genética , Salicilatos/metabolismo , Simbiose
18.
ACS Appl Mater Interfaces ; 14(5): 7428-7439, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089684

RESUMO

Intermixing of atomic species at the electrode-electrolyte boundaries can impact the properties of the interfaces in solid-state batteries. Herein, this work uses first-principles statistical mechanics along with experimental characterization to understand intermixing at the electrode-electrolyte interface. For the model presented in this work, lithium manganese oxide (LiMn2O4, LMO) and lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) are employed as the cathode and electrolyte, respectively. The results of the computational work show that Ti-Mn intermixing at the interface is significant at synthesis temperatures. The experimental results in this work find that, at some critical temperatures between 600 and 700 °C for material preparation, the interface of LLTO-LMO becomes blurred. Calculations predict that the interface is unstable with regard to Ti-Mn intermixing starting at 0 K, suggesting that the critical temperature found in the experiment is related to kinetics. The work overall suggests that, in designing a solid-state battery, the fundamental reactions such as intermixing need to be considered.

19.
ACS Appl Mater Interfaces ; 13(36): 43641-43647, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473930

RESUMO

Multiferroic tunnel junctions (MFTJs), normally consisting of a four-state resistance, have been studied extensively as a potential candidate for nonvolatile memory devices. More interestingly, the MFTJs whose resistance can be tuned continuously with applied voltage were also reported recently. Since the performance of MFTJs is closely related to their interfacial structures, it is necessary to investigate MFTJs at the atomic scale. In this work, atomic-resolution HAADF, ABF, and EELS of the La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 MFTJ memristor have been obtained with aberration-corrected scanning transmission electron microscopy (STEM). These results demonstrate varied degree of interfacial cation intermixing at the bottom BTO/LSMO interface, which has a direct influence on the polarization of the ferroelectric barrier BTO and the electronic structure of Mn near the interfaces. We also took advantage of a simplified model to explain the relation between the interfacial behavior and polarization states, which could be a contributing factor to the transport properties of this MFTJ.

20.
ACS Appl Mater Interfaces ; 13(32): 38553-38560, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342965

RESUMO

Multiple-stage interband cascade infrared photodetector (ICIP) is a new class of semiconductor infrared photodetector that exhibits improved device performance in terms of responsivity and detectivity. The design of the device structure and the electronic structure on superlattices and quantum wells assume abrupt interfaces. However, the emergence of possible interface segregation and atom exchange can only be determined experimentally, impacting the device performance. In this work, the interface atom intermixing and their effects on the energy band structure in a molecular beam epitaxy grown ICIP are studied. Scanning transmission electron microscopy (STEM) reveals atom diffusion and intermixing between the constituent layers of the cascade structure, causing a shift in the quantum state energy levels of the layers and the consequent misalignment of the cascade structures. Combining the STEM observation with high-resolution X-ray diffraction, the alloy composition profiles of the layers are determined. Using the "real" graded composition profiles, the effective band gap of the superlattice absorber and the energy levels of the relaxation region and the tunneling region are recalculated showing a cutoff wavelength of the superlattice absorber 4.93 µm, which is 0.78 µm smaller than that calculated using the nominal step composition profile. However, its agreement is greatly improved with the measured cutoff wavelength of 5.03 µm. The energy level of the narrowest quantum well in the relaxation region is 0.091 eV higher than the conduction miniband of the absorber, which is also consistent with the experiments that the pho-response exits a "turn on" voltage of 0.1 V. The results reported here will help optimize the energy structure design of future ICIP with improved device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA