RESUMO
Intermuscular bones, which are present in numerous economically significant fish species, have a negative impact on the development of aquaculture. The Asb15b gene, primarily expressed in skeletal muscle, plays a crucial role in regulating protein turnover and the development of muscle fibers. It stimulates protein synthesis and controls the differentiation of muscle fibers. In this study, we employed CRISPR/Cas9 technology to generate homozygous zebrafish strains with 7 bp and 49 bp deletions in the Asb15b gene. Subsequent analyses using skeleton staining demonstrated a substantial reduction in the number of intermuscular bones in adult Asb15b-/- -7 bp and Asb15b-/- -49 bp mutants compared to the wild-type zebrafish, with decreases of 30 % (P < 0.001) and 40 % (P < 0.0001), respectively. Histological experiments further revealed that the diameter and number of muscle fibers in adult Asb15b-/- mutants did not exhibit significant changes when compared to wild-type zebrafish. Moreover, qRT-PCR experiments demonstrated significant differences in the expression of bmp6 and runx2b genes, which are key regulators of intermuscular bone development, during different stages of intermuscular bone development in Asb15b-/- mutants. This study strongly suggests that the Asb15b gene plays a crucial role in regulating intermuscular bone development in fish and lays the groundwork for further exploration of the role of the Asb15b gene in zebrafish intermuscular bone development.
Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Osso e Ossos/metabolismo , Desenvolvimento Ósseo/genética , Sistemas CRISPR-Cas , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Repetição de AnquirinaRESUMO
The allotetraploid common carp is one of the most important freshwater food fish. However, the IBs found in allotetraploid common carp increase the difficulty in fish meat processing and consumption. Although candidate genes associated with the total IB number have been identified, the SNPs associated with the numbers of the total IBs and different forms of IBs have not yet been identified, hindering the breeding of IB-reduced common carp. Herein, the numbers of different types of IBs in three common carp strains were measured. Using whole-genome resequencing and bulked segregant analysis in three pairs of IB-more and IB-less groups, we identified the consensus nonsynonymous SNPs in three strains of common carp. Screening the flanking regions of these SNPs led to the detection of other SNPs. Association study detected 21 SNPs significantly associated with the number of total IBs, epineural-IBs, and ten detailed types of IBs. We observed the joint effects of multiple SNPs on each associated IB number with an improved explained percentage of phenotypic variation. The resulting dataset provides a resource to understand the molecular mechanisms of IB development in different common carp strains. These SNPs are potential markers for future selection to generate IB-reduced common carp.
RESUMO
Intermuscular bones (IBs) are small spicule-like bones located in the myosepta of basal teleosts, which negatively affect the edibleness and economic value of fish. Blunt snout bream (Megalobrama amblycephala, with epineural and epipleural IBs) and tilapia (Oreochromis niloticus, without epineural and epipleural IBs) are two major aquaculture species and ideal models for studying the formation mechanisms of fish IBs. Here, we compared myosepta development between M. amblycephala and O. niloticus, based on histological analysis, transcriptome profiling, and expression analysis of bone-related genes. The histological results showed that dye condensation began to appear in the myosepta 20 days post hatching (dph) in M. amblycephala, and IBs could be clearly observed 50 dph in the myosepta, based on different staining methods. However, in O. niloticus, dye condensation was not observed in the myosepta from 10 to 60 dph. Differentially expressed genes (DEGs) at different developmental stages were screened by comparing the transcriptomes of M. amblycephala and O. niloticus, and KEGG analysis demonstrated that these DEGs were enriched in many bone-related pathways, such as focal adhesion, calcium, and Wnt signaling pathways. Quantitative PCR was performed to further compare the expression levels of some bone-related genes (scxa, scxb, runx2a, runx2b, bgp, sp7, col1a2, entpd5a, entpd5b, phex, alpl, and fgf23). All the tested genes (except for alpl) exhibited higher expression levels in M. amblycephala than in O. niloticus. A comparison of the dorsal and abdominal muscle tissues between the two species also revealed significant expression differences for most of the tested genes. The results suggest that scxa, scxb, runx2a, runx2b, entpd5a, col1a2, and bgp may play important roles in IB development. Our findings provide some insights into the molecular mechanisms of IB formation, as well as clues for further functional analysis of the identified genes to better understand the development of IBs.
RESUMO
Intermuscular bone (IB) is a hard-boned spicule exist in lower teleost, which brings a lot of detrimental effects on palatability and economic value of blunt snout bream (Megalobrama amblycephala). Masson trichrome staining for ossific IB indicated that some osteoblasts appeared at the edge of the bone matrix and a few osteocytes are present in the center of the mineralized bone matrix. By comparing the orthologous gene families of fish with IBs and without IBs, we screened the key signaling pathways associated with IB formation. Furthermore, the transcriptomic data demonstrated the functional importance of these gene families. The candidate genes involved in chondrocyte development were highly expressed in stage 1 compared with stage 2 and stage 3, suggesting that the development process of IB might mainly involve in intramembranous ossification. Our research reveals the molecular mechanism of IBs formation, and provides molecular evidence for the further study on intermuscular boneless stains.
Assuntos
Desenvolvimento Ósseo , Cyprinidae/genética , Transcriptoma , Animais , Condrócitos/metabolismo , Cyprinidae/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Osteoblastos/metabolismo , Transdução de SinaisRESUMO
Intermuscular bones (IBs) specially exist in lower teleost fish and the molecular mechanism for its development remains to be clarified. In this study, different staining methods and comparative proteomics were conducted to investigate the histological structure and proteome of IB development in Megalobrama amblycephala, including four key IB developmental stages (S1-IBs have not emerged in the tail part; S2-several small IBs started to ossify in the tail part; S3-IBs appeared rapidly; S4-all the IBs appeared with mature morphology). Alcian blue and alizarin red S stained results indicated that IBs were gradually formed from S2 to S4, undergoing intramembranous ossification without a cartilaginous phase. A total of 3368 proteins were identified by using the isobaric tags for relative and absolute quantitation (iTRAQ) approach. Functional annotation showed that proteins which were differentially expressed among stages were involved in calcium, MAPK, Wnt, TGF-ß, and osteoclast pathways which played a critical role in bone formation and differentiation. Three proteins (collagen9α1, stat1, tnc) associated with chondrocytes did not exhibit significant changes through S2 to S4; however, proteins (entpd5, casq1a, pvalb, anxa2a, anxa5) which associated with osteoblasts and bone formation and differentiation showed significantly a higher expression level from S1 to S2, as well as to S3 and S4. These further demonstrated that development of IBs did not go through a cartilaginous phase. The inhibitors of TGF-ß and Wnt pathways were tested on zebrafish (sp7/eGFP) and the results indicated that both inhibitors significantly delayed IB development. This study provides a comprehensive understanding of the IB ossification pattern, which will help further elucidate the molecular mechanisms for IB development in teleosts.
Assuntos
Desenvolvimento Ósseo/genética , Osso e Ossos/metabolismo , Peixes/fisiologia , Osteogênese , Proteoma , Transcriptoma , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteômica , Transdução de SinaisRESUMO
There is an increasing interest in understanding teleost bone biomechanics in several scientific communities, for instance as interesting biomaterials with specific structure-function relationships. Intermuscular bones of teleost fish have previously been described to play a role in the mechanical force transmission between muscle and bone, but their biomechanical properties are not yet fully described. Here, we have investigated intermuscular bones (IBs) of the North Atlantic Herring with regard to their structure and micro-architecture, mineral-related properties, and micro-mechanical tensile properties. A total of 115 IBs from 18 fish were investigated. One cohort of IBs, containing 20 bones from 2 smaller fish and 23 bones of 3 larger fish, was used for mechanical testing, wide-angle X-ray scattering, and scanning electron microscopy. Another cohort, containing 36 bones from 7 smaller fish and 36 bones from 6 larger fish, was used for microCT. Results show some astonishing properties of the IBs: (i) IBs present higher ductility, lower Young's modulus but similar strength and TMD (Tissue Mineral Density) compared to mammalian bone, and (ii) IBs from small fish were 49% higher in Young's modulus than fish bones from larger fish while their TMD was not statistically different and crystal length was 8% higher in large fish bones. Our results revealed that teleost IB presents a hybrid nature of soft and hard tissue that differs from other bone types, which might be associated with their evolution from mineralized tendons. This study provides new data regarding teleost fish bone biomechanical and micro-structural properties.
Assuntos
Osso e Ossos/ultraestrutura , Peixes/anatomia & histologia , Animais , Fenômenos Biomecânicos , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Módulo de Elasticidade , Peixes/fisiologia , Dureza , Microscopia Eletrônica de Varredura , Minerais , Músculos , Microtomografia por Raio-XRESUMO
Intermuscular bones (IBs) only exist in the myosepta of lower teleosts and its molecular mechanism remains to be clarified. Bone morphogenetic proteins (BMPs) have been demonstrated to be involved in various physiological processes, including bone and cartilage formation. In this study, we firstly obtained and characterized nine bmp genes for Megalobrama amblycephala, which belongs to Cyprinidae and have a certain amount of IBs. Sequence alignment and phylogenetic analysis both documented that the mature proteins of M. amblycephala bmp genes were highly conserved with other corresponding homologs, respectively, indicating that the function of each bmp gene has been conserved throughout evolution. As a step to characterize potential involvement of bmp genes in IB formation and development, spatiotemporal expressions of nine bmp genes (bmp2a, bmp2b, bmp3, bmp4, bmp5, bmp7b, bmp8a, bmp14 and bmp16) were investigated during the key development stages of IBs. During the ossification process from stage I (the IBs haven't emerged) to stage IV (all of the IBs ossified in the tail with the mature morphology), the expression profiles revealed that bmp16 was the most abundant transcript while bmp4 had the lowest abundance. The mRNA levels of bmp3, bmp4, bmp5 and bmp8a increased significantly at stage II, suggesting their roles in stimulating IB formation. The expression of bmp7b reached the highest level at stage III (the rapid period of IB development), suggesting potential involvement of bmp7b in promoting osteoblast differentiation. With the exception of bmp7b and bmp16, most bmp genes appeared a significant increase at IB maturation phase (stage IV), which means that they may play important roles in maintenance of IB morphogenesis. Spatial tissue distribution of bmp genes showed that most bmp genes were observed at the highest level in developing IBs at one year old fish. Spatiotemporal expression patterns suggest the potential key roles of these bmp genes in IBs formation and maintenance in fish, being as possible promoters or inhibitors.
Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Cyprinidae/crescimento & desenvolvimento , Animais , Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Clonagem Molecular , Sequência Conservada , Cyprinidae/genética , Cyprinidae/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Alinhamento de Sequência , Distribuição TecidualRESUMO
The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.
Assuntos
Adaptação Fisiológica , Cyprinidae/genética , Evolução Molecular , Genoma , Herbivoria/genética , Animais , Osso e Ossos/anatomia & histologia , Cyprinidae/fisiologia , Proteínas de Peixes/genética , Microbioma Gastrointestinal , Receptores Odorantes/genética , TranscriptomaRESUMO
Intermuscular bones are found in the myosepta in teleosts. However, there is very little information on the development and ossification of these intermuscular bones. In this study, we performed an in-depth investigation of the ossification process during development in zebrafish (Danio rerio) and Japanese eel (Anguilla japonica). In Japanese eel, a typical anguilliform swimmer, the intermuscular bones ossified predominantly from the anterior to the posterior. By contrast, in the zebrafish, a sub-carangiform or carangiform swimmer, the intermuscular bones ossified predominantly from the posterior to the anterior regions of the fish. Furthermore, tail amputation affected the ossification of the intermuscular bones. The length of the intermuscular bones in the posterior area became significantly shorter in tail-amputated zebrafish and Japanese eels, and both had less active and lower swimming speeds; this indicates that swimming might induce the ossification of the intermuscular bones. Moreover, when a greater length of tail was amputated in the zebrafish, the intermuscular bones became even shorter. Tail amputation affected the length and ossification of intermuscular bones in the anterior part of the fish, close to the head, differently between the two fish: they became significantly shorter in the zebrafish, but did not in the Japanese eel. This might be because tail amputation did not significantly affect the undulations in the anterior of the Japanese eel, especially near the head. This study shows that the ossification of intermuscular bones might be induced through mechanical force loadings that are produced by swimming.
RESUMO
Intermuscular bone (IB), which occurs only in the myosepta of the lower teleosts, is attracting more attention of researchers due to its particular development and lack of genetic information. MicroRNAs (miRNAs) are emerging as important regulators for biological processes. In the present study, miRNAs from IBs and connective tissue (CT; encircled IBs) from six-month-old Megalobrama amblycephala were characterized and compared. The results revealed the sequences and expression levels of 218 known miRNA genes (belonging to 97 families). Of these miRNAs, 44 known microRNA sequences exhibited significant expression differences between the two libraries, with 24 and 20 differentially-expressed miRNAs exhibiting higher expression in the CT and IBs libraries, respectively. The expressions of 11 miRNAs were selected to validate in nine tissues. Among the high-ranked predicted gene targets, differentiation, cell cycle, metabolism, signal transduction and transcriptional regulation were implicated. The pathway analysis of differentially-expressed miRNAs indicated that they were abundantly involved in regulating the development and differentiation of IBs and CT. This study characterized the miRNA for IBs of teleosts for the first time, which provides an opportunity for further understanding of miRNA function in the regulation of IB development.
Assuntos
Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Cyprinidae/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Animais , Cyprinidae/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismoRESUMO
In this study, 149 polymorphic markers were screened from 200 microsatellite markers. From a family of mirror carp, which included 107 individuals. All samples were analyzed for body correlation, and intermuscular bone number was tested using the General Linear Model (GLM) single marker regression. Determination of the threshold values by 10,000 permutation tests showed that eight markers had significant correlation (P<0.05), in which HLJ3086, HLJ3642 and HLJ3515 had very significant correlation with intermuscular bone number (P<0.01). In addition, the genotypes of the captured correlative loci were determined by Duncan's test using SPSS17.0 software. Markers were used to screen the protein and nucleotide database in the National Center for Biotechnology Information (NCBI). Blasting results showed that HLJ2891 was highly correlated (92%) with latrophilin-2-like and HLJ3515 was highly correlated (81%) with serine/threonine-protein kinase 32B-like of zebrafish. These functional markers and genotypes may provide an efficient basis for marker-assisted selection of intermuscular bone number in mirror carp.