Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39048784

RESUMO

Iron is essential for every cell of the mammalian organism. Iron deficiency is a major public health issue worldwide. Intravenous (IV) iron therapy has been used to treat anemia. However, IV iron therapy is known far away from ideal because the quantitative relationship between the pharmacokinetics and biodistribution of IV iron under different iron statuses remains unclear. Patients are known to suffer adverse effects from excessive iron accumulation. Our objective was to develop a physiologically based pharmacokinetic (PBPK) model of iron in mice and validate its application for predicting iron disposition in rats and humans. Previously published data on iron were collected for constructing the PBPK model of iron in mice, and then extrapolated to rats and humans based on physiologically and chemically specific parameters relevant to each species. The PBPK model characterized the distribution of iron in mice successfully. The model based on extrapolation to rats accurately simulated the ferric carboxymaltose (FCM) PK profiles in rat tissues. Similarly, the observed and simulated serum PK of FCM in humans were in reasonable agreement. This mechanistic whole-body PBPK model is useful for understanding and predicting iron effects on different species. It also establishes a foundation for future research that incorporates iron kinetics and biodistribution, along with related clinical experiments. This approach could lead to the development of effective and personalized iron deficiency anemia treatments.

2.
AAPS J ; 25(6): 101, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891410

RESUMO

The prediction of transgene product expression in human is important to guide first-in-human (FIH) dose selection for viral vector-based gene replacement therapies. Recently, allometric scaling from preclinical data and interspecies normalization of dose-response (D-R) relationship have been used to predict human transgene product expression of adeno-associated virus (AAV) vectors. In this study, we assessed two interspecies allometric scaling methods and two dose-response methods in predicting human transgene product expression of nine intravenously administered AAV vectors, one intramuscularly administered AAV vector, and one intravesical administered adenoviral vector. Among the four methods, normalized D-R method generated the highest prediction accuracy, with geometric mean fold error (GMFE) of 2.9 folds and 75% predictions within fivefold deviations of observed human transgene product levels. The vg/kg-based D-R method worked well for locally delivered vectors but substantially overpredicted human transgene product levels of some hemophilia A and B vectors. For both intravenously and locally administered vectors, the prediction accuracy of allometric scaling using body weight^-0.25 (AS by W^-0.25) was superior to allometric scaling using log(body weight) (AS by logW). This study successfully extended the use of allometric scaling and interspecies D-R normalization methods for human transgene product prediction from intravenous viral vectors to locally delivered viral vectors.


Assuntos
Terapia Genética , Hemofilia A , Humanos , Transgenes/genética , Vetores Genéticos/genética , Peso Corporal
3.
Biomed Pharmacother ; 167: 115441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696082

RESUMO

Telacebec is a new anti-tuberculosis agent with promising therapeutic activity and a favorable safety profile. This study aimed to characterize the pharmacokinetics of telacebec via interspecies scaling and population pharmacokinetic modeling for the prediction of human pharmacokinetics. Preclinical pharmacokinetic data were obtained from mice, rats, and dogs following intravenous and oral doses of telacebec. A population pharmacokinetic model was developed to describe the pharmacokinetic data from all three species. The disposition parameters were well correlated with the body weight for all species using an allometric equation. Thus, the allometric scaling was incorporated into the population pharmacokinetic model, which could simultaneously describe the plasma concentration vs. time data from all preclinical studies as well as the Phase 1A clinical study. The developed model was used to predict the pharmacokinetics of telacebec after IV injection, including the clearance (CL) of 168.58 [118.86 - 238.73] mL/min and volume of distribution (Vss) of 968.84 [396.87 - 2831.31] L for 80-kg human. The absolute bioavailability of telacebec in humans in the fed state was estimated as 70.34 ± 9.91%. Finally, the population pharmacokinetic model with allometric scaling was utilized to simulate the plasma concentration vs. time profiles of telacebec after multiple oral doses in humans. The model-predicted profiles well agreed with the observed data in Phase 1B clinical trial. The present pharmacokinetic model may help better understand the activity of telacebec, leading to the design of optimal dosing regimens and new formulation development.

4.
J Pharmacokinet Pharmacodyn ; 50(5): 377-394, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382712

RESUMO

The main objective of this manuscript was to validate the ability of the monoclonal antibody physiologically-based pharmacokinetic (PBPK) model to predict tissue concentrations of antibodies in the human. To accomplish this goal, preclinical and clinical tissue distribution and positron emission tomography imaging data generated using zirconium-89 (89Zr) labeled antibodies were obtained from the literature. First, our previously published translational PBPK model for antibodies was expanded to describe the whole-body biodistribution of 89Zr labeled antibody and the free 89Zr, as well as residualization of free 89Zr. Subsequently, the model was optimized using mouse biodistribution data, where it was observed that free 89Zr mainly residualizes in the bone and the extent of antibody distribution in certain tissues (e.g., liver and spleen) may be altered by labeling with 89Zr. The mouse PBPK model was scaled to rat, monkey, and human by simply changing the physiological parameters, and a priori simulations performed by the model were compared with the observed PK data. It was found that model predicted antibody PK in majority of the tissues in all the species superimposed over the observed data, and the model was also able to predict the PK of antibody in human tissues reasonably well. As such, the work presented here provides unprecedented evaluation of the antibody PPBK model for its ability to predict tissue PK of antibodies in the clinic. This model can be used for preclinical-to-clinical translation of antibodies and for prediction of antibody concentrations at the site-of-action in the clinic.


Assuntos
Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons , Camundongos , Ratos , Humanos , Animais , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Baço/metabolismo , Linhagem Celular Tumoral
5.
Int J Pharm ; 626: 122160, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089211

RESUMO

The goal of this study was to construct a PBPK model to accelerate the translation of MBS77E, a humanized bispecific antibody against the Ebola virus. In-depth nonclinical pharmacokinetic studies in rats, monkeys, wild-type mice and transgenic mice were conducted. The pH-dependent affinities (KD) of MBS77E to recombinant FcRn of different species were determined by surface plasmon resonance analysis. A mechanistic whole-body PBPK model of MBS77E was developed and validated in the assessment of PK profiles and tissue distributions in preclinical models. This PBPK model was finally used to predict human PK behaviors of MBS77E. Simulations from the PBPK model with measured and fitted parameters were able to yield good predictions of the serum and tissue pharmacokinetic parameters of MBS77E within 2-fold errors. The predicted serum concentration in humans was able to maintain a sufficiently high level for more than 14 days after 50 mg/kg i.v. administrating. This achievement unlocks that PBPK modeling is a powerful tool to gain insights into the properties of antibody drugs. It guided experimental efforts to obtain necessary information before entry into humans.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Simulação por Computador , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Camundongos , Modelos Biológicos , Farmacocinética , Ratos , Distribuição Tecidual
6.
MAbs ; 13(1): 1964935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34530672

RESUMO

Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Adulto , Criança , Humanos , Recém-Nascido , Modelos Biológicos
7.
Biopharm Drug Dispos ; 42(5): 191-203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33638217

RESUMO

The pharmacokinetic (PK) parameters of dexamethasone (DEX) in 11 species were collected from the literature and clearances (CL) assessed by basic allometric methods, and concentration-time course profiles were fitted using two PK models incorporating physiological or allometric scaling. Plots of log CL vs. log body weights (BW) correlated reasonably with R2  = 0.91, with a maximum ratio of actual to fitted CL of 6 (for pig). A minimal physiologically-based pharmacokinetic (mPBPK) model containing blood and two lumped tissue compartments and integrated utilization of physiological parameters was compared to an allometric two-compartment model (a2CM). The plasma PK profiles of DEX from 11 species were analyzed jointly, with the mPBPK model having conserved partition coefficients (Kp ), physiologic blood and tissue volumes, and species-specific CL values. The DEX PK profiles were reasonably captured by the mPBPK model for 9 of 11 species in the joint analysis with three fitted parameters (besides CL) including an overall tissue-to-plasma partition coefficient of 1.07. The a2CM with distribution CL and central and peripheral volumes scaled allometrically fitted the plasma concentration profiles similarly but required a total of six parameters (besides CL). Overall, the literature reported that DEX CL values exhibit moderate variability (mean = 0.64 L/h/kg; coefficient of variation = 105%), but distribution parameters were largely conserved across most species.


Assuntos
Anti-Inflamatórios/farmacocinética , Dexametasona/farmacocinética , Glucocorticoides/farmacocinética , Modelos Biológicos , Animais , Anti-Inflamatórios/sangue , Dexametasona/sangue , Glucocorticoides/sangue , Humanos , Especificidade da Espécie
8.
Mol Pharm ; 16(10): 4399-4404, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31430156

RESUMO

Preclinical in vivo tests of retinal drug responses are carried out in mice and rats, often after intravitreal injections. However, quantitative pharmacokinetics in the mouse eye is poorly understood. Ocular pharmacokinetics studies are usually done in rabbits. We investigated elimination of three compounds ([99mTc]Tc-pentetate, [111In]In-pentetreotide, [99mTc]Tc-human serum albumin with molecular weights of 510.2 Da, 1506.4 Da, and 66.5 kDa, respectively) from mouse vitreous using imaging with single photon emission computed tomography/computed tomography (SPECT/CT). Increasing molecular weight decreased elimination of the compounds from the mouse eyes. Half-lives of [99mTc]Tc-pentetate, [111In]In-pentetreotide, and [99mTc]Tc-human serum albumin in the mouse eyes were 1.8 ± 0.5 h, 4.3 ± 1.7 h, and 30.0 ± 9.0 h, respectively. These values are 3-12-fold shorter than half-lives of similar compounds in the rabbit vitreous. Dose scaling factors were calculated for mouse-to-rabbit and mouse-to-man translation. They were 27-90 and 38-126, respectively, for intravitreal injections in rabbit and man. We show ocular pharmacokinetic parameters for mice and interspecies scaling factors that may augment ocular drug discovery and development.


Assuntos
Olho/diagnóstico por imagem , Olho/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Somatostatina/análogos & derivados , Agregado de Albumina Marcado com Tecnécio Tc 99m/farmacocinética , Pentetato de Tecnécio Tc 99m/farmacocinética , Animais , Humanos , Radioisótopos de Índio/farmacocinética , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Cintilografia/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Somatostatina/farmacocinética , Distribuição Tecidual
9.
AAPS PharmSciTech ; 20(6): 221, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31214899

RESUMO

Fomepizole is used as an antidote to treat methanol poisoning due to its selectivity towards alcohol dehydrogenase. In the present study, the goal is to develop a method to predict the fomepizole human plasma concentration versus time profile based on the preclinical pharmacokinetics using the assumption of superimposability on simulated time course profiles of animals and humans. Standard allometric equations with/without correction factors were also assimilated in the prediction. The volume of distribution at steady state (Vss) predicted by simple allometry (57.55 L) was very close to the reported value (42.17 L). However, clearance (CL) prediction by simple allometry was at least 3-fold higher to the reported value (33.86 mL/min); hence, multiple correction factors were used to predict the clearance. Both brain weight and maximum life span potential could predict the CL with 1.22- and 1.01-fold difference. Specifically, the predicted Vss and CL values via interspecies scaling were used in the prediction of series of human intravenous pharmacokinetic parameters, while the simulation of human oral profile was done by the use of absorption rate constant (Ka) from dog following the applicability of human bioavailability value scaled from dog data. In summary, the findings indicate that the utility of diverse allometry approaches to derive the human pharmacokinetics of fomepizole after intravenous/oral dosing.


Assuntos
Antídotos/farmacocinética , Fomepizol/farmacocinética , Administração Intravenosa , Animais , Antídotos/administração & dosagem , Disponibilidade Biológica , Fomepizol/administração & dosagem , Fomepizol/sangue , Humanos , Masculino , Camundongos , Modelos Biológicos , Coelhos , Ratos
10.
J Pharmacokinet Pharmacodyn ; 46(4): 319-338, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31115858

RESUMO

In this manuscript, we have presented the development of a novel platform physiologically-based pharmacokinetic (PBPK) model to characterize brain disposition of mAbs in the mouse, rat, monkey and human. The model accounts for known anatomy and physiology of the brain, including the presence of distinct blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier. CSF and interstitial fluid turnover, and FcRn mediated transport of mAbs are accounted for. The model was first used to characterize published and in-house pharmacokinetic (PK) data on the disposition of mAbs in rat brain, including the data on PK of mAb in different regions of brain determined using microdialysis. Majority of model parameters were fixed based on literature reported values, and only 3 parameters were estimated using rat data. The rat PBPK model was translated to mouse, monkey, and human, simply by changing the values of physiological parameters corresponding to each species. The translated PBPK models were validated by a priori predicting brain PK of mAbs in all three species, and comparing predicted exposures with observed data. The platform PBPK model was able to a priori predict all the validation PK profiles reasonably well (within threefold), without estimating any parameters. As such, the platform PBPK model presented here provides an unprecedented quantitative tool for prediction of mAb PK at the site-of-action in the brain, and preclinical-to-clinical translation of mAbs being developed against central nervous system (CNS) disorders. The proposed model can be further expanded to account for target engagement, disease pathophysiology, and novel mechanisms, to support discovery and development of novel CNS targeting mAbs.


Assuntos
Anticorpos Monoclonais/farmacocinética , Encéfalo/metabolismo , Modelos Biológicos , Pesquisa Translacional Biomédica/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/líquido cefalorraquidiano , Haplorrinos , Humanos , Camundongos , Especificidade de Órgãos , Ratos , Especificidade da Espécie , Distribuição Tecidual
11.
Cancer Chemother Pharmacol ; 83(6): 1159-1173, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30976845

RESUMO

PURPOSE: Radiation therapy, whether given alone or in combination with chemical agents, is one of the cornerstones of oncology. We develop a quantitative model that describes tumor growth during and after treatment with radiation and radiosensitizing agents. The model also describes long-term treatment effects including tumor regrowth and eradication. METHODS: We challenge the model with data from a xenograft study using a clinically relevant administration schedule and use a mixed-effects approach for model-fitting. We use the calibrated model to predict exposure combinations that result in tumor eradication using Tumor Static Exposure (TSE). RESULTS: The model is able to adequately describe data from all treatment groups, with the parameter estimates taking biologically reasonable values. Using TSE, we predict the total radiation dose necessary for tumor eradication to be 110 Gy, which is reduced to 80 or 30 Gy with co-administration of 25 or 100 mg kg-1 of a radiosensitizer. TSE is also explored via a heat map of different growth and shrinkage rates. Finally, we discuss the translational potential of the model and TSE concept to humans. CONCLUSIONS: The new model is capable of describing different tumor dynamics including tumor eradication and tumor regrowth with different rates, and can be calibrated using data from standard xenograft experiments. TSE and related concepts can be used to predict tumor shrinkage and eradication, and have the potential to guide new experiments and support translations from animals to humans.


Assuntos
Modelos Biológicos , Neoplasias/radioterapia , Radiossensibilizantes/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Dosagem Radioterapêutica , Especificidade da Espécie , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Expert Opin Drug Discov ; 13(6): 539-550, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519169

RESUMO

INTRODUCTION: Diseases of the Central Nervous System (CNS) affect millions of people worldwide, with the number of people affected quickly growing. Unfortunately, the successful development of CNS-acting drugs is less than 10%, and this is attributed to the complexity of the CNS, unexpected side effects, difficulties in penetrating the blood-brain barrier and lack of biomarkers. Areas covered: Herein, the authors first review how pharmacokinetic/pharmacodynamic (PK/PD) models are designed to predict the dose-dependent time course of effect, and how they are used to translate drug effects from animal to man. Then, the authors discuss how pharmacometabolomics gives insight into system-wide pharmacological effects and why it is a promising method to study interspecies differences. Finally, the authors advocate the application of PK/PD-metabolomics modeling to advance translational CNS drug development by discussing its opportunities and challenges. Expert opinion: It is envisioned that PK/PD-metabolomics will increase our understanding of CNS drug effects and improve translational CNS drug development, thereby increasing success rates. The successful future development of this concept will require multi-level and longitudinal biomarker evaluation over a large dose range, multi-tissue biomarker evaluation, and the generation of a proof of principle by application to multiple CNS drugs in multiple species.


Assuntos
Fármacos do Sistema Nervoso Central/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Animais , Biomarcadores/metabolismo , Fármacos do Sistema Nervoso Central/farmacocinética , Fármacos do Sistema Nervoso Central/farmacologia , Doenças do Sistema Nervoso Central/fisiopatologia , Relação Dose-Resposta a Droga , Humanos , Metabolômica/métodos , Modelos Biológicos , Especificidade da Espécie , Pesquisa Translacional Biomédica/métodos
13.
Pharmacol Ther ; 178: 141-147, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28442326

RESUMO

Clinical pharmacologists and toxicologists are often faced with predicting equivalent dosages for humans from biological observations in laboratory animals. Allometric scaling has been used extensively as the basis for extrapolation of drug dosage that might be expected to produce the equivalent biological effects. Allometry is the study of size and its consequences and it is based on the anatomical, physiological, and biochemical similarities between animals. In this review, retrospective analyses have been performed based on data reported in the literature in an attempt to determine the utility of allometric scaling for human dose projections from pre-clinical data for compounds that are delivered by inhalation. The limited pre-clinical efficacy data available on inhaled drugs that are also used clinically supports the current method of scaling using a fixed allometric exponent of 0.67. An example of the utility of the human inhaled dose projections for planning inhaled toxicology studies is also presented.


Assuntos
Relação Dose-Resposta a Droga , Doenças Respiratórias/tratamento farmacológico , Administração por Inalação , Aerossóis , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Pulmão/metabolismo , Roedores , Especificidade da Espécie , Testes de Toxicidade/métodos
14.
J Pharm Sci ; 106(8): 2136-2143, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28389265

RESUMO

FXaI16L is a recombinant human FXa variant which is currently being evaluated in the clinic for treating intracerebral hemorrhage. The aim of our studies is to investigate overall pharmacokinetics, pharmacodynamics, and distribution of FXaI16L in preclinical species, and to understand its potential implication in human. Pharmacokinetics of FXaI16L was examined using active site probes and the results showed that FXaI16L displayed fast clearance, low volume of distribution, and a very short plasma resident time in mice, rats, and monkeys. When pharmacodynamics was examined in monkeys, concentration effects of FXaI16L on shortening of active partial prothrombin time and formation of thrombin-antithrombin complex were observed. Furthermore, biodistribution study was conducted in mice using radiolabeled FXaI16L, and showed that 125I-FXaI16L has high plasma protein binding and significant liver and kidney distribution. Human pharmacokinetic prediction for first-in-human dosing was evaluated using allometric scaling, liver blood flow, and a fixed coefficient method, and single species allometric scaling using monkey data was most predictive for human pharmacokinetics of FXaI16L.


Assuntos
Fator Xa/farmacologia , Fator Xa/farmacocinética , Animais , Coagulação Sanguínea/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Fator Xa/metabolismo , Humanos , Macaca fascicularis , Masculino , Camundongos , Modelos Biológicos , Ligação Proteica , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Distribuição Tecidual
15.
J Pharm Sci ; 105(10): 3205-3213, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506269

RESUMO

Artemether is co-administered with lumefantrine as part of a fixed-dose combination therapy for malaria in both adult and pediatric patients. However, artemether exposure is higher in younger infants (1-3 months) with a lower body weight (<5 kg) as compared to older infants (3-6 months) with a higher body weight (≥5 to <10 kg), children, and adults. In contrast, lumefantrine exposure is similar in all age groups. This article describes the clinically observed artemether exposure data in pediatric populations across various age groups (1 month to 12 years) and body weights (<5 or ≥5 kg) using physiologically based pharmacokinetic (PBPK) mechanistic models. A PBPK model was developed using artemether physicochemical, biopharmaceutic, and metabolic properties together with known enzyme ontogeny and pediatric physiology. The model was verified using clinical data from adult patients after multiple doses of oral artemether, and was then applied to simulate the exposure in children and infants. The simulated PBPK concentration-time profiles captured observed clinical data. Consistent with the clinical data, the PBPK model simulations indicated a higher artemether exposure for younger infants with lower body weight. A PBPK model developed for artemether reliably described the clinical data from adult and pediatric patients.


Assuntos
Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Modelos Biológicos , Adulto , Fatores Etários , Antimaláricos/sangue , Artemeter , Artemisininas/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
J Pharm Sci ; 105(4): 1398-404, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27019957

RESUMO

NVS123 is a poorly water-soluble protease 56 inhibitor in clinical development. Data from in vitro hepatocyte studies suggested that NVS123 is mainly metabolized by CYP3A4. As a consequence of limited solubility, NVS123 therapeutic plasma exposures could not be achieved even with high doses and optimized formulations. One approach to overcome NVS123 developability issues was to increase plasma exposure by coadministrating it with an inhibitor of CYP3A4 such as ritonavir. A clinical boost effect was predicted by using physiologically based pharmacokinetic (PBPK) modeling. However, initial boost predictions lacked sufficient confidence because a key parameter, fraction of drug metabolized by CYP3A4 (fmCYP3A4), could not be estimated with accuracy on account of disconnects between in vitro and in vivo preclinical data. To accurately estimate fmCYP3A4 in human, an in vivo boost effect study was conducted using CYP3A4-humanized mouse model which showed a 33- to 56-fold exposure boost effect. Using a top-down approach, human fmCYP3A4 for NVS123 was estimated to be very high and included in the human PBPK modeling to support subsequent clinical study design. The combined use of the in vivo boost study in CYP3A4-humanized mouse model mice along with PBPK modeling accurately predicted the clinical outcome and identified a significant NVS123 exposure boost (∼42-fold increase) with ritonavir.


Assuntos
Fármacos Anti-HIV/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Simulação por Computador , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Modelos Biológicos , Ritonavir/farmacologia
17.
Xenobiotica ; 46(12): 1093-1104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26986924

RESUMO

1. To compare the disposition of docetaxel (DTX) in male/female rats after intravenous administration of simple injection and folate-poly(PEG-cyanoacrylate-co-cholesteryl cyanoacrylate)-modified liposomes utilising a physiologically based pharmacokinetic (PBPK) modelling method, and extrapolate this model to mice and humans by taking into account the interspecies differences in physiological- and chemical-specific parameters. 2. Four structural models for single organs were evaluated, and the whole-body PBPK model included artery, vein, lung, brain, heart, spleen, liver, gastrointestinal tract, kidney, muscle and remainder compartment. 3. Rats following modified liposomes administration were characterised by significant decrease in the partition coefficients for brain, spleen, liver and remainder compartment. The blood-to-plasma partition coefficient also decreased significantly, while a marked rise of partition coefficients for lung, kidney and muscle was revealed. Partition coefficient for heart was approximately 1.3-fold higher in females than males, while the decrease of intestinal clearance was revealed in females compared to males. The final model successfully characterised the time course of DTX in rats, mice and humans. 4. This PBPK model is beneficial to the prediction of the effects of DTX in different species. It also represented a platform to encompass both formulation- and sex-related effects on DTX disposition and elimination in the future.


Assuntos
Antineoplásicos/farmacocinética , Modelos Biológicos , Taxoides/farmacocinética , Animais , Docetaxel , Feminino , Humanos , Lipossomos , Masculino , Camundongos , Ratos , Especificidade da Espécie
18.
Chem Biol Drug Des ; 86(5): 990-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25845625

RESUMO

Human clearance is often predicted prior to clinical study from in vivo preclinical data by virtue of interspecies allometric scaling methods. The aims of this study were to determine the important molecular descriptors for the extrapolation of animal data to human clearance and further to build a model to predict human clearance by combination of animal data and the selected molecular descriptors. These important molecular descriptors selected by genetic algorithm (GA) were from five classes: quantum mechanical, shadow indices, E-state keys, molecular properties, and molecular property counts. Although the data set contained many outliers determined by the conventional Mahmood method, the variation of most outliers was reduced significantly by our final support vector machine (SVM) model. The values of cross-validated correlation coefficient and root-mean-squared error (RMSE) for leave-one-out cross-validation (LOOCV) of the final SVM model were 0.783 and 0.305, respectively. Meanwhile, the reliability and consistency of the final model were also validated by an external test set. In conclusion, the SVM model based on the molecular descriptors selected by GA and animal data achieved better prediction performance than the Mahmood method. This approach can be applied as an improved interspecies allometric scaling method in drug research and development.


Assuntos
Modelos Biológicos , Farmacocinética , Algoritmos , Animais , Humanos , Preparações Farmacêuticas/química , Máquina de Vetores de Suporte
19.
FASEB J ; 29(5): 1629-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25657112

RESUMO

Body surface area (BSA) scaling has been used for prescribing individualized dosages of various drugs and has also been recommended by the U.S. Food and Drug Administration as one method for using data from animal model species to establish safe starting dosages for first-in-human clinical trials. Although BSA conversion equations have been used in certain clinical applications for decades, recent recommendations to use BSA to derive interspecies equivalents for therapeutic dosages of drug and natural products are inappropriate. A thorough review of the literature reveals that BSA conversions are based on antiquated science and have little justification in current translational medicine compared to more advanced allometric and physiologically based pharmacokinetic modeling. Misunderstood and misinterpreted use of BSA conversions may have disastrous consequences, including underdosing leading to abandonment of potentially efficacious investigational drugs, and unexpected deadly adverse events. We aim to demonstrate that recent recommendations for BSA are not appropriate for animal-to-human dosage conversions and use pharmacokinetic data from resveratrol studies to demonstrate how confusion between the "human equivalent dose" and "pharmacologically active dose" can lead to inappropriate dose recommendations. To optimize drug development, future recommendations for interspecies scaling must be scientifically justified using physiologic, pharmacokinetic, and toxicology data rather than simple BSA conversion.


Assuntos
Superfície Corporal , Ensaios Clínicos como Assunto/normas , Drogas em Investigação/farmacocinética , Modelos Animais , Animais , Relação Dose-Resposta a Droga , Drogas em Investigação/análise , Humanos , Especificidade da Espécie , Equivalência Terapêutica , Distribuição Tecidual
20.
Proc Natl Acad Sci U S A ; 111(43): 15310-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25267617

RESUMO

Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.


Assuntos
Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Medição de Risco , Animais , Traumatismos por Explosões/fisiopatologia , Peso Corporal , Lesões Encefálicas/fisiopatologia , Elasticidade , Análise de Elementos Finitos , Humanos , Pressão Intracraniana , Camundongos , Modelos Biológicos , Tamanho do Órgão , Coelhos , Especificidade da Espécie , Sus scrofa , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA