Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.909
Filtrar
1.
Biomaterials ; 313: 122764, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39190941

RESUMO

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Assuntos
Hidrogênio , Degeneração do Disco Intervertebral , Mitocôndrias , Estresse Oxidativo , Hidrogênio/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Disco Intervertebral/efeitos dos fármacos , Humanos , Mitofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino , Núcleo Pulposo/metabolismo , Ratos
2.
Noncoding RNA Res ; 10: 177-191, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39430607

RESUMO

Background: Intervertebral disc degeneration (IVDD) is one of the important causes of lower back pain, seriously affecting people's health and quality of life. This research employs single-cell analysis to identify the specific cellular subtypes and key regulatory genes associated with IVDD. Methods: We analyzed the single-cell data and screened cells that closely associated with the development of IVDD. The differential expression of feature genes between IVDD and control groups was analyzed. Additionally, drugs and regulatory transcription factors that interact with feature genes were predicted and clinically validated by reverse transcription quantitative real-time PCR (RT-qPCR), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Results: Our study identified the Chond2 cell subtype associated with IVDD and selected four feature genes influencing the development of IVDD, namely IGFBP3, ACAN, VAPA and TMEM45A, through the high-dimensional weighted gene co-expression network analysis (hdWGCNA) analysis, least absolute shrinkage and selection operator (LASSO), and random forest (RF). Besides, compared to the MDD group, IGFBP3 and TMEM45A were significantly upregulated in the SDD group, while ACAN and VAPA showed no significant difference between the two groups. ELISA testing revealed a positive correlation between IGFBP3 concentration and the grading of IVDD. Furthermore, Celecoxib may be used to treat IVDD by inhibiting IGFBP3. Conclusion: Our study identified the Chond2 cell subtype associated with IVDD and selected four feature genes influencing the development of IVDD, namely IGFBP3, ACAN, VAPA and TMEM45A. Our findings establish a robust theoretical foundation for the clinical diagnosis and treatment of IVDD patients.

3.
Front Immunol ; 15: 1465126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39483476

RESUMO

Background: Intervertebral disc degeneration (IDD) is widely regarded as the primary contributor to low back pain(LBP). As an immune-privileged organ, upon the onset of IDD, various components of the nucleus pulposus (NP) are exposed to the host's immune system, accumulating cytokines. Cytokines facilitate intercellular communication within the immune system, induce immune cells polarisation, and exacerbate oxidative stress in IDD. Methods: Machine learning was used to identify crucial immune cells. Subsequently, Immune Response Enrichment Analysis (IREA) was conducted on the key immune cells to determine their cytokine responses and polarisation states in IDD. "CellChat" package facilitated the analysis of cell-cell communication. Differential gene expression analysis, PPI network, GO and KEGG pathway enrichment analysis, GSVA, co-expressed gene analysis and key gene-related networks were also performed to explore hub genes and their associated functions. Lastly, the differential expression and functions of key genes were validated through in vitro and in vivo experiments. Results: Through multiple machine learning methods, monocytes were identified as the crucial immune cells in IDD, exhibiting significant differentiation capacity. IREA revealed that monocytes in IDD polarize into an IFN-a1 and IFN-b enriched Mono-a state, potentially intensifying inflammation. Cell-cell communication analysis uncovered alteration in ANNEXIN pathway and a reduction in CXCL signaling between macrophages and monocytes, suggesting immune response dysregulation. Furthermore, ten algorithms identified three hub genes. Both experiments conducted in vitro and in vivo have conclusively shown that IRF7 serves as a crucial target for the treatment of IDD, and its knockdown alleviates IDD. Eight small-molecule drugs were predicted to have therapeutic potential for IDD. Conclusion: These findings offer a multidimensional understanding of the pathogenesis of IDD, pinpointing monocytes and key genes as potential diagnostic and therapeutic targets. They provide novel insights into potential diagnostic and therapeutic targets for IDD.


Assuntos
Fator Regulador 7 de Interferon , Degeneração do Disco Intervertebral , Aprendizado de Máquina , Monócitos , Humanos , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/genética , Monócitos/imunologia , Monócitos/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Animais , Citocinas/metabolismo , Redes Reguladoras de Genes , Núcleo Pulposo/metabolismo , Núcleo Pulposo/imunologia , Núcleo Pulposo/patologia , Perfilação da Expressão Gênica , Camundongos , Biologia Computacional/métodos
4.
J Orthop Translat ; 49: 181-206, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39483126

RESUMO

Background: Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review: Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review: Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article: Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.

5.
J Orthop Surg Res ; 19(1): 632, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375759

RESUMO

BACKGROUND: During the development of disease-modifying intervertebral disc degeneration (IDD) drugs, the rat model of IDD is frequently used for disease progression assessment. The aim of this study was to describe a magnetic resonance (MRI) scoring system for the assessment of different disc conditions in puncture-induced IDD, allowing standardization and comparison of results obtained by different investigators. METHODS: A total of 36 Sprague-Dawley rats were utilized in the present study. The animals were divided into two groups: a sham group and an IDD group caused by puncture. The rats in the IDD group were subsequently divided into six categories based on time frames, with five rats in each category. The sham group was divided into two sub-groups (n = 3) for 28 and 56 days, respectively. T2-weighted images of rats consecutively studied with MRI of the coccygeal discs were classified according to the time course using the corresponding histological data. Additional scoring of the micro-CT was employed to identify the progression of bone destruction of the rat model of IDD. RESULTS: A comparison of the MRI results between the sham group and the IDD group revealed a significant reduction in NP height, area, T2WI value, and DHI in the latter group (P < 0.05). The micro-CT results demonstrated that following acupuncture, there was a notable decline in the BV, Tb.N, and height of the coccygeal vertebra, while the BS/BV and Tb.Sp exhibited a significant increase (P < 0.05). The histological results were analogous to the MRI results, indicating a progressive exacerbation of IDD and a corresponding increase in NP score (P < 0.05). The results of the MRI were found to be consistent with those of the micro-CT and histological analyses (P < 0.05). The results of the study demonstrate a robust correlation between MRI analysis and histological findings. Live animals are employed for MRI analysis to improve experiment comparability. The reliability of the MRI scoring system ensures assessment of disease progression in live animals, while promoting cost savings and animal welfare by avoiding the sacrifice of animals at different times. CONCLUSIONS: The described scoring paradigm has quantitatively been found to differentiate IDD disease progression in an in vivo rat model. Hence, we suggest employing it to evaluate the rat IDD model and assess the effects of treatments in this model.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Animais , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Progressão da Doença , Agulhas , Punções , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Microtomografia por Raio-X/métodos
6.
Orthop Surg ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39359110

RESUMO

OBJECTIVES: To describe a simplified classification scheme for endplate injury morphology based on 3D CT and to examine possible associations between endplate injury morphology and vertebral space and other variables such as type of fracture and disc degeneration in a group of patients with thoracolumbar fractures. METHODS: This study was a retrospective cohort study. We collected patients with thoracolumbar fractures admitted from January 2015 to August 2020 and divided them into three groups based on the morphology of endplate injury (45 cases of mild endplate injury, 54 cases of moderate endplate injury, and 42 cases of severe endplate injury, SEI). Data of vertebral body and intervertebral space height and angle, the Pfirrmann grade, endplate healing morphology were collected during preoperative, postoperative, and long-term follow-up of patients in each group. One-way analysis of variance (ANOVA), chi-squared test, and repeated measurement ANOVA were used to compare and analyze the influence of endplate injury morphology on patient prognosis. RESULTS: Most moderate injuries to the endplate (fissure-type injury) and severe injuries (irregular depression-type injury, Schmorl's node-type injury) resulted in significant disc degeneration in the long-term transition. This study also showed significant differences in the height of the anterior margin of the injured spine and the intervertebral space height index during this process. CONCLUSIONS: The current study suggests that although the region of injury in endplate fissure-type injury is small preoperatively, it may be a major factor in leading to severe disc degeneration, loss of intervertebral height, and Cobb angle in the long term. The results of our study therefore may allow surgeons to predict the prognosis of patients with thoracolumbar fractures and guide their treatment.

7.
Inflamm Res ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379638

RESUMO

BACKGROUND: Lower back pain, as a typical clinical symptom of spinal degenerative diseases, is emerging as a major social problem. According to recent researches, the primary cause of this problem is intervertebral disc degeneration (IVDD). IVDD is closely associated with factors such as age, genetics, mechanical stimulation (MS), and inadequate nutrition. In recent years, an increasing number of studies have further elucidated the relationship between MS and IVDD. However, the exact molecular mechanisms by which MS induces IVDD remain unclear, highlighting the need for in-depth exploration and study of the relationship between MS and IVDD. METHODS: Search for relevant literature on IVDD and MS published from January 1, 2010, to the present in the PubMed database. RESULTS: One of the main causes of IVDD is MS, and loading modalities have an impact on the creation of matrix metalloproteinase, the metabolism of the cellular matrix, and other biochemical processes in the intervertebral disc. Nucleus pulposus cell death induced by MS, cartilage end-plate destruction accompanied by pyroptosis, apoptosis, iron death, senescence, autophagy, oxidative stress, inflammatory response, and ECM degradation interact with one another to form a cooperative signaling network. CONCLUSION: This review discusses the molecular mechanisms of the changes in the microenvironment of intervertebral discs caused by mechanical pressure, explores the interaction between mechanical pressure and IVDD, and provides new insights and approaches for the clinical prevention and treatment of IVDD.

8.
Am J Vet Res ; : 1-9, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378903

RESUMO

OBJECTIVE: To investigate the prevalence and severity of intervertebral disc (IVD) degeneration (IVDD) throughout the spine of young, middle-aged, and old asymptomatic cats; identify differences between the cervical, thoracic, and lumbar spine; and investigate the influence of sex and neuter status on the prevalence of feline IVDD. METHODS: 60 cadavers were collected from asymptomatic cats and subdivided into 3 age groups: young (≥ 1 to < 6 years), middle aged (≥ 6 to < 12 years), and old (≥ 12 years). T2 weighted sagittal MRI studies of the spine were obtained. Each IVD was graded according to the modified Pfirrmann grading for feline IVDD. Cumulative link mixed models were used to analyze the significance of spinal region, age, sex, and neuter status on the degenerative state of the IVDs. RESULTS: A total of 1,544 IVDs were evaluated; 884 (57.3%), 425 (27.5%), 147 (9.5%), 82 (5.3%), and 6 (0.4%) were graded Pfirrmann 1, 2, 3, 4, and 5, respectively. Irrespective of spinal region, middle-aged cats (OR, 4.03; P < .01) and old cats (OR, 12.5; P < .01) had significantly higher odds for IVDD compared to young cats. For old cats, thoracic (OR, 4.44; P < .01) and cervical IVDs (OR, 2.76; P < .01) had significantly higher odds of degenerating compared to lumbar IVDs. No significant effect of sex (P = .81) and neuter status (P = .61) was found. CLINICAL RELEVANCE: The prevalence of feline IVDD significantly increases with progressive age, with the thoracic and cervical IVDs showing the highest odds for degeneration. However, extreme stages of IVDD were only occasionally observed.

9.
Osteoporos Sarcopenia ; 10(3): 108-113, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39403217

RESUMO

Objectives: Intradiscal steroid injection (ISI) use has been proven as a low-risk and rapid treatment for disc degeneration disease (DDD). However, the histological effects of steroids on human discs remain poorly understood. The purpose of this study is to investigate whether ISI induces histologic degeneration of the disc. Methods: In this study, a histological analysis was carried out on the nucleus pulposus obtained from 150 patients who underwent posterior lumbar interbody fusion. Among these individuals, 59 received ISI before the surgery, while 91 did not. After staining with hematoxylin and eosin, the histological classification was performed based on chondrocyte proliferation (C1, C2, and C3) and granular matrix change (M1 and M2). Logistic regression analysis was used to identify the main factors influencing chondrocyte proliferation and granular matrix change. Additionally, histological differences between the ISI group and the non-ISI group were analyzed. Results: Chondrocyte proliferation and granular matrix changes were not significantly different between the ISI and non-ISI groups. The logistic regression analysis indicated that age is the most significant risk factor for both chondrocyte proliferation (P = 0.02) and granular matrix changes (P < 0.01). Conclusions: The most crucial factor in disc degeneration is age. ISI does not accelerate the histological degeneration of chondrocyte proliferation and granular matrix. Therefore, the ISI could be considered as a histologically safe alternative in patients with DDD.

10.
Free Radic Biol Med ; 225: 98-111, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366471

RESUMO

OBJECTIVES: Oxidative stress, mitochondrial dysfunction, and apoptosis play significant roles in the degradation of extracellular matrix (ECM) in nucleus pulposus cells (NPCs), ultimately contributing to intervertebral disc degeneration (IVDD). This study investigates the potential of isoliquiritigenin (ISL), a natural extract known for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties, to alleviate IVDD. METHODS: The viability of NPCs treated with ISL and tert-butyl hydroperoxide (TBHP) was assessed using the CCK-8 assay. Various techniques, including Western blot, qRT-PCR, immunofluorescence (IF), and immunohistochemistry, were employed to measure the expression of ECM components, oxidative stress markers, and apoptosis-related proteins. Mitochondrial function was evaluated through Western blot and IF analyses. Network pharmacology predicted ISL targets, and the expression levels of PPARγ were assessed using the aforementioned methods. The role of PPARγ in the therapeutic effects of ISL on IVDD was examined through siRNA knockdown. The therapeutic impact of ISL on puncture-induced IVDD in rats was evaluated using X-ray, MRI, and histological staining techniques. RESULTS: In vitro, ISL reduced oxidative stress in NPCs, restored mitochondrial function, inhibited apoptosis, and improved the ECM phenotype. In vivo, ISL slowed the progression of IVDD in a rat model. Further analysis revealed that ISL enhances PPARγ activity and promotes its expression by direct binding, contributing to the delay of IVDD progression. CONCLUSION: This study demonstrates that ISL effectively treats puncture-induced IVDD in rats by inhibiting oxidative stress, restoring mitochondrial function, and reducing NPC apoptosis through a PPARγ-dependent mechanism. By balancing ECM synthesis and degradation, ISL presents a novel therapeutic approach for IVDD and identifies a promising target for treatment.

11.
Front Cell Dev Biol ; 12: 1423665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364138

RESUMO

Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.

12.
Front Cell Dev Biol ; 12: 1416345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351146

RESUMO

Introduction: Ferroptosis plays a significant role in intervertebral disc degeneration (IDD). Understanding the key genes regulating ferroptosis in IDD could reveal fundamental mechanisms of the disease, potentially leading to new diagnostic and therapeutic targets. Methods: Public datasets (GSE23130 and GSE70362) and the FerrDb database were analyzed to identify ferroptosis-related genes (DE-FRGs) involved in IDD. Single-cell RNA sequencing data (GSE199866) was used to validate the specific roles and expression patterns of these genes. Immunohistochemistry and Western blot analyses were subsequently conducted in both clinical samples and mouse models to assess protein expression levels across different tissues. Results: The analysis identified seven DE-FRGs, including MT1G, CA9, AKR1C1, AKR1C2, DUSP1, CIRBP, and KLHL24, with their expression patterns confirmed by single-cell RNA sequencing. Immunohistochemistry and Western blot analysis further revealed that MT1G, CA9, AKR1C1, AKR1C2, DUSP1, and KLHL24 exhibited differential expression during the progression of IDD. Additionally, the study highlighted the potential immune-modulatory functions of these genes within the IDD microenvironment. Discussion: Our study elucidates the critical role of ferroptosis in IDD and identifies specific genes, such as MT1G and CA9, as potential targets for diagnosis and therapy. These findings offer new insights into the molecular mechanisms underlying IDD and present promising avenues for future research and clinical applications.

13.
JOR Spine ; 7(4): e70006, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39391171

RESUMO

Background: Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods: To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and µCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results: At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion: The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.

14.
J Orthop Translat ; 49: 119-134, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39444419

RESUMO

Background: Intervertebral disc degeneration(IVDD) is the primary etiology of low back pain and radicular pain. Recent studies have found that chemokines play a role in IVDD, but the underlying mechanism is largely unclear. Methods: Bioinformatics analysis was employed to screen CXCL8 as the target gene. The expression levels of CXCL8 and CXCR2 were quantified using RT-qPCR, western blot(WB), immunohistochemistry(IHC), and enzyme-linked immuno-sorbent assay(ELISA). In the IVDD mouse model, X-ray images, Safranin O-fast green staining(SO-FG), IHC, and WB were conducted to assess the therapeutic effects of CXCL8 on IVDD. Reactive oxygen species (ROS) production, apoptosis of nucleus pulposus cells (NPCs), and the involvement of the NF-κB pathway were evaluated through WB, flow cytometry, immunofluorescence(IF), and Tunnel assay. Results: In our study, we observed that CXCL8 emerged as one of the chemokines that were up-regulated in IVDD. The mitigation of extracellular matrix degradation (ECM) and the severity of IVDD were significantly achieved by neutralizing CXCL8 or its receptor CXCR2(SB225002, CXCR2 antagonist). The release of CXCL8 from infiltrated macrophages within intervertebral discs (IVDs) was predominantly observed upon stimulation. CXCL8 exerted its effects on NPCs by inducing apoptosis and ECM degradation through the activation of CXCR2. Specifically, the formation of the CXCL8/CXCR2 complex triggered the NF-κB signaling pathway, resulting in an abnormal increase in intracellular ROS levels and ultimately contributing to the development of IVDD. Conclusion: Our findings suggest that macrophage-derived CXCL8 and subsequent CXCR2 signaling play crucial roles in mediating inflammation, oxidative stress, and apoptosis in IVDD. Targeting the CXCL8/CXCR2 axis may offer promising therapeutic strategies to ameliorate IVDD. The translational potential of this article: This study indicates that CXCL8 can effectively exacerbate the excessive apoptosis and oxidative stress of NPCs through activating the NF-κB pathway. This study may provide new potential targets for preventing and reversing IVDD.

15.
bioRxiv ; 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39416006

RESUMO

Cellular senescence, characterized by a permanent state of cell cycle arrest and a secretory phenotype contributing to inflammation and tissue deterioration, has emerged as a target for age-related interventions. Accumulation of senescent cells is closely linked with intervertebral disc (IVD) degeneration, a prevalent age-dependent chronic disorder causing low back pain. Previous studies have highlighted that platelet-derived growth factor (PDGF) mitigated IVD degeneration through anti-apoptosis, anti-inflammation, and pro-anabolism. However, its impact on IVD cell senescence remains elusive. In this study, human NP and AF cells derived from aged, degenerated IVDs were treated with recombinant human (rh) PDGF-AB/BB for 5 days and changes of transcriptome profiling were examined through mRNA sequencing. NP and AF cells demonstrated similar but distinct responses to the treatment. However, the effects of PDGF-AB and BB on human IVD cells were comparable. Specifically, PDGF-AB/BB treatment resulted in downregulation of gene clusters related to neurogenesis and response to mechanical stimulus in AF cells while the downregulated genes in NP cells were mainly associated with metabolic pathways. In both NP and AF cells, PDGF-AB and BB treatment upregulated the expression of genes involved in cell cycle regulation, mesenchymal cell differentiation, and response to reduced oxygen levels, while downregulating the expression of genes related to senescence associated phenotype, including oxidative stress, reactive oxygen species (ROS), and mitochondria dysfunction. Network analysis revealed that PDGFRA and IL6 were the top hub genes in treated NP cells. Furthermore, in irradiation-induced senescent NP cells, PDGFRA gene expression was significantly reduced compared to non-irradiated cells. However, rhPDGF-AB/BB treatment increased PDGFRA expression and mitigated the senescence progression through increased cell population in the S phase, reduced SA-ß-Gal activity, and decreased expression of senescence related regulators including P21, P16, IL6, and NF-κB. Our findings reveal a novel anti-senescence role of PDGF in the IVD, demonstrating its ability to alleviate the senescent phenotype and protect against the progression of senescence. This makes it a promising candidate for preventing or treating IVD degeneration by targeting cellular senescence.

16.
J Transl Med ; 22(1): 941, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407249

RESUMO

The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.


Assuntos
Artropatias , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/transplante , Animais , Artropatias/terapia , Artropatias/cirurgia
17.
Mol Med ; 30(1): 180, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39425013

RESUMO

This study investigates the potential molecular mechanisms by which O-GlcNAc modification of YTHDF2 regulates the cell cycle and participates in intervertebral disc degeneration (IDD). We employed transcriptome sequencing to identify genes involved in IDD and utilized bioinformatics analysis to predict key disease-related genes. In vitro mechanistic validation was performed using mouse nucleus pulposus (NP) cells. Changes in reactive oxygen species (ROS) and cell cycle were assessed through flow cytometry and CCK-8 assays. An IDD mouse model was also established for in vivo mechanistic validation, with changes in IDD severity measured using X-rays and immunohistochemical staining. Bioinformatics analysis revealed differential expression of YTHDF2 in NP cells of normal and IDD mice, suggesting its potential as a diagnostic gene for IDD. In vitro cell experiments demonstrated that YTHDF2 expression and O-GlcNAcylation were reduced in NP cells under H2O2 induction, leading to inhibition of the cell cycle through decreased stability of CCNE1 mRNA. Further, in vivo animal experiments confirmed a decrease in YTHDF2 expression and O-GlcNAcylation in IDD mice, while overexpression or increased O-GlcNAcylation of YTHDF2 promoted CCNE1 protein expression, thereby alleviating IDD pathology. YTHDF2 inhibits its degradation through O-GlcNAc modification, promoting the stability of CCNE1 mRNA and the cell cycle to prevent IDD formation.


Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteínas de Ligação a RNA , Animais , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/etiologia , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Espécies Reativas de Oxigênio/metabolismo , Ciclo Celular/genética , Ciclina E/metabolismo , Ciclina E/genética , Acetilglucosamina/metabolismo , Masculino , Biologia Computacional/métodos , Glicosilação , Perfilação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica
18.
Sci Rep ; 14(1): 23716, 2024 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390000

RESUMO

Growing research has suggested an association between chronic inflammation and Intervertebral disc degeneration (IVDD), but whether there is a causal effect remains unknown. This study adopted two-sample Mendelian randomization (MR) approach to explore the etiological role of chronic inflammation in IVDD risk. Here, summary statistics for C-reactive protein (CRP), interleukin (IL)-1 α , IL-1 ß , IL-6 expression and IVDD were obtained from genome-wide association studies (GWAS) of European ancestry. MR analyses were conducted by using inverse variance weighted (IVW), Wald Ratio, weighted median, and MR-Egger method. Sensitivity analyses were conducted to assess the robustness of the results. The MR analyses suggested a lack of causal association of CRP, IL-6 , and IL-1 α levels on IVDD (CRP-IVDD: odds ratio [OR] = 0.97, 95% confidence interval [CI] 0.86-1.09, P = 0.583; IL-6-IVDD: OR = 1.04, 95% CI 0.86-1.27, P = 0.679; IL-1 α -IVDD: OR = 1.09, 95%CI 1.00-1.18, P = 0.058). However, there was a sign of a connection between genetically elevated IL-1 ß levels and a decreased IVDD incidence (OR = 0.87, 95%CI 0.77-0.99, P = 0.03). Our findings suggest a connection between IL-1 ß levels and the risk of IVDD. However, due to the support of only one SNP, heterogeneity and pleiotropy tests cannot be performed, the specific underlying mechanisms warrant further investigation.


Assuntos
Estudo de Associação Genômica Ampla , Degeneração do Disco Intervertebral , Análise da Randomização Mendeliana , Humanos , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/análise , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/sangue , Interleucina-6/genética , Interleucina-6/sangue , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/sangue , Polimorfismo de Nucleotídeo Único
19.
Nanomedicine ; : 102790, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39414222

RESUMO

Orthopaedic medicine often treats intervertebral disc degeneration (IVDD), which is caused by nucleus pulposus (NP) tissue damage and mechanical stress. Bioactive glasses (BGs), widely used for bone regeneration, can incorporate therapeutic ions into their network. Manganese (Mn) activates human osteoblast integrins, proliferation, and spreading. The CMnBGNPs-NPMSCs are carboxymethyl cellulose hydrogels functionalized with MnBGsNPs and NP-derived mesenchymal stem cells to treat IVDD. To ensure stability and biocompatibility of CMnBGNPs-NPMSCs were characterized for rheological properties like gelation time and swelling ratio. Gene expression analysis of PAX1, FOXF1, CA12, HBB, and OVOS2 via qRT-PCR further assessed the hydrogel's characteristics. Rat models with induced IVDD had hydrogel-MSC composite injected into their intervertebral discs for in vivo studies. Histological examination, immunohistochemical staining for inflammation and disc regeneration markers, and disc height assessments assessed therapeutic efficacy. CMnBGNPs-NPMSCs show promising results for IVDD treatment, offering a novel therapeutic strategy with clinical implications for degenerative disc diseases.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39426787

RESUMO

OBJECTIVE: Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration. METHODS: Caudal IVDs from 12-week-old C57BL6/J mice were injured and monitored for 42 days post-injury. Transcriptional markers identifying myeloid, B, and T immune cells, and angiogenic factors were measured from the IVDs every 2-3 days. Histopathologic degeneration of the IVD was measured throughout. Flow cytometry and immunofluorescence were used to identify and localize cells including B, T, natural killer T (NKT) cells, monocytes, neutrophils, macrophages, eosinophils, and dendritic cells. RESULTS: The injured IVD revealed distinct phases of inflammation and proliferation. Robust temporal oscillation in the myeloid and T cell transcripts was observed in females. Cd3+ T cells were more abundant in females than in males. The Cd3+Cd4-Cd8- T cells that dominate the female cascade contain rare γδ T cells. Injury-mediated degeneration was prevalent in both sexes but more severe in males. CONCLUSIONS: This study defines the coordinated infiltration of immune cells in the IVD following injury. We report the discovery of γδ T cells in the female IVD, and this was associated with less severe degeneration. γδ T cells have potent anti-inflammatory roles and may suppress degeneration following IVD injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA