RESUMO
Inflammatory Bowel Disease (IBD) is believed to be a risk factor for Small Intestinal Neuroendocrine Tumors (SI-NET) development; however, the molecular relationship between IBD and SI-NET has yet to be elucidated. In this study, we use a systems biology approach to uncover such relationships. We identified a more similar transcriptomic-wide expression pattern between Crohn's Disease (CD) and SI-NET whereas a higher proportion of overlapping dysregulated genes between Ulcerative Colitis (UC) and SI-NET. Enrichment analysis indicates that extracellular matrix remodeling, particularly in epithelial-mesenchymal transition and intestinal fibrosis mediated by TIMP1, is the most significantly dysregulated pathway among upregulated genes shared between both IBD subtypes and SI-NET. However, this remodeling occurs through distinct regulatory molecular mechanisms unique to each IBD subtype. Specifically, myofibroblast activation in CD and SI-NET is mediated through IL-6 and ciliary-dependent signaling pathways. Contrarily, in UC and SI-NET, this phenomenon is mainly regulated through immune cells like macrophages and the NCAM signaling pathway, a potential gut-brain axis in the context of these two diseases. In both IBD and SI-NET, intestinal fibrosis resulted in significant metabolic reprogramming of fatty acid and glucose to an inflammatory- and cancer-inducing state. This altered metabolic state, revealed through enrichment analysis of downregulated genes, showed dysfunctions in oxidative phosphorylation, gluconeogenesis, and glycogenesis, indicating a shift towards glycolysis. Also known as the Warburg effect, this glycolytic switch, in return, exacerbates fibrosis. Corresponding to enrichment analysis results, network construction and subsequent topological analysis pinpointed 7 protein complexes, 17 hub genes, 11 microRNA, and 1 transcription factor related to extracellular matrix accumulation and metabolic reprogramming that are candidate biomarkers in both IBD and SI-NET. Together, these biological pathways and candidate biomarkers may serve as potential therapeutic targets for these diseases.
RESUMO
BACKGROUND: Intestinal fibrosis is one of the most frequent and severe complications of Crohn's disease. Accumulating studies have reported that adipose mesenchymal stem cell-derived small extracellular vesicles (AMSC-sEVs) could alleviate renal fibrosis, hepatic fibrosis, etc., while their potential for treating intestinal fibrosis remains uncertain. Therefore, this study aims to determine the therapeutic effects of AMSC-sEVs on intestinal fibrosis and identify the mechanisms underlying these effects. METHODS: AMSC-sEVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and western blot. Whether AMSC-sEVs exert antifibrotic effects was investigated in two different murine models of intestinal fibrosis. Besides, AMSC-sEVs were co-cultured with primary human fibroblasts and CCD18co during transforming growth factor (TGF)-ß1 stimulation. Label-free proteomics and rescue experiments were performed to identify candidate molecules in AMSC-sEVs. Transcriptome sequencing revealed changes in mRNA levels among different groups. Lastly, proteins related to relevant signaling pathways were identified by western blotting, and their expression and activation status were assessed. RESULTS: AMSC-sEVs positively expressed CD63 and Alix and presented a classical "rim of a cup" and granule shape with approximately 43-100 nm diameter. AMSCs significantly alleviated intestinal fibrosis through secreted sEVs in vitro and in vivo. The milk fat globule-EGF factor 8 (MFGE8) was stably enriched in AMSC-sEVs and was an active compound contributing to the treatment of intestinal fibrosis by AMSCs. Mechanistically, AMSC-sEV-based therapies attenuated intestinal fibrosis by inhibiting the FAK/Akt signaling pathway. CONCLUSIONS: MFGE8-containing AMSC-sEVs attenuate intestinal fibrosis, partly through FAK/Akt pathway inhibition.
RESUMO
BACKGROUND AND AIMS: Intestinal fibrosis, a frequent complication of inflammatory bowel disease, is characterized by stricture formation with no pharmacological treatment to date. N-acylethanolamine acid amidase (NAAA) is responsible of acylethanolamides (AEs, e.g., palmitoylethanolamide and oleoylethanolamide) hydrolysis. Here, we investigated NAAA and AEs signalling in gut fibrosis. METHODS: NAAA and AEs signalling were evaluated in human intestinal specimens from stenotic Crohn's diseases (CD) patients. Gut fibrosis was induced by TNBS, monitored by colonoscopy and unascertained by qRT-PCR, histological analyses, and confocal microscopy. Immune cells were analysed in mesenteric lymph nodes by FACS. Colonic fibroblasts were cultured in conditioned media derived from polarized or not bone marrow-derived macrophages (BMDM). IL-23 signalling was evaluated by qRT-PCR, ELISA, FACS, and western blot in BMDM and in lamina propria CX3CR1+ cells. RESULTS: In ileocolonic human CD strictures, increased transcript expression of NAAA was observed with a decrease of its substrates OEA and PEA. NAAA inhibition reduced intestinal fibrosis in vivo, as revealed by decrease in inflammatory parameters, collagen deposition and fibrosis genes, including epithelial to mesenchymal transition. More in-depth studies revealed modulation of the immune response related to IL-23 following NAAA inhibition. The antifibrotic actions of NAAA inhibition are mediated by Mφ and M2 macrophages that indirectly affect fibroblast collagenogenesis. NAAA inhibitor AM9053 normalized IL-23 signalling in BMDM and in lamina propria CX3CR1+ cells. CONCLUSIONS: Our findings provide new insights into the pathophysiological mechanism of intestinal fibrosis and identify NAAA as a promising target for the development of therapeutic treatments to alleviate CD fibrosis.
RESUMO
BACKGROUND: Inflammatory bowel disease, particularly Crohn's disease (CD), has been associated with alterations in mesenteric adipose tissue (MAT) and the phenomenon termed "creeping fat". Histopathological evaluations showed that MAT and intestinal tissues were significantly altered in patients with CD, with these tissues characterized by inflammation and fibrosis. AIM: To evaluate the complex interplay among MAT, creeping fat, inflammation, and gut microbiota in CD. METHODS: Intestinal tissue and MAT were collected from 12 patients with CD. Histological manifestations and protein expression levels were analyzed to determine lesion characteristics. Fecal samples were collected from five recently treated CD patients and five control subjects and transplanted into mice. The intestinal and mesenteric lesions in these mice, as well as their systemic inflammatory status, were assessed and compared in mice transplanted with fecal samples from CD patients and control subjects. RESULTS: Pathological examination of MAT showed significant differences between CD-affected and unaffected colons, including significant differences in gut microbiota structure. Fetal microbiota transplantation (FMT) from clinically healthy donors into mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD ameliorated CD symptoms, whereas FMT from CD patients into these mice exacerbated CD symptoms. Notably, FMT influenced intestinal permeability, barrier function, and levels of proinflammatory factors and adipokines. Furthermore, FMT from CD patients intensified fibrotic changes in the colon tissues of mice with TNBS-induced CD. CONCLUSION: Gut microbiota play a critical role in the histopathology of CD. Targeting MAT and creeping fat may therefore have potential in the treatment of patients with CD.
Assuntos
Doença de Crohn , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doença de Crohn/microbiologia , Doença de Crohn/terapia , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Animais , Humanos , Camundongos , Feminino , Masculino , Adulto , Fezes/microbiologia , Ácido Trinitrobenzenossulfônico , Colo/microbiologia , Colo/patologia , Colo/imunologia , Fibrose , Mesentério , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Estudos de Casos e Controles , Adulto Jovem , Permeabilidade , Tecido Adiposo , Adipocinas/metabolismoRESUMO
BACKGROUND AND AIMS: During early phases of inflammation, activated neutrophils extrude neutrophil extracellular traps (NETs) in a PAD4-dependent manner, aggravating tissue injury and remodelling. In this study, we investigated the potential pro-fibrotic properties and signalling of NETs in Crohn's disease (CD). METHODS: NETs and activated fibroblasts were labelled on resected ileum from CD patients by multiplex immunofluorescence staining. NETs-treated human primary intestinal fibroblasts were analysed by bulk RNA-sequencing to uncover cell signalling pathways, and by high-throughput imaging to assess collagen production and migratory activity. Consequentially, TLR2/NF-kB pathway was evaluated by transfection of CCD-18Co fibroblasts with NF-kB-luciferase reporter plasmid, incorporating C29 to block TLR2 signalling. A chronic DSS mouse model was used to define the specific role of PAD4 deletion in neutrophils (MRP8-Cre, Pad4fl/fl). RESULTS: Immunofluorescence showed spatial co-localisation of NETs and activated fibroblasts in ileal ulcerations of CD patients. Transcriptomic analysis revealed upregulation of pro-fibrotic genes and activation of TLR-signalling pathways in NETs-treated fibroblasts. NETs treatment induced fibroblast proliferation, diminished migratory capability, and increased collagen release. Transfection experiments indicated a substantial increase in NF-kB expression with NETs, whereas C29 led to decreased expression and release of collagen. In line, a significantly reduction in collagen content was observed in the colon of MRP8-Cre, Pad4fl/fl mice subjected to chronic DSS colitis. CONCLUSIONS: NETs potentially serve as an initial stimulus for pathological activation of fibroblasts within the intestine via the TLR2/NF-kB pathway. Given their early involvement in inflammation, inhibition of PAD4 might offer a strategy to modulate both inflammation and fibrogenesis in CD.
RESUMO
The mechanism underlying intestinal fibrosis, the main complication of inflammatory bowel disease (IBD), is not yet fully understood, and there is no therapy to prevent or reverse fibrosis. We evaluated, in in vitro cellular models, the ability of different classes of drugs currently used in IBD to counteract two pivotal processes of intestinal fibrosis, the differentiation of intestinal fibroblasts to activated myofibroblasts using CCD-18Co cells, and the epithelial-to-mesenchymal transition (EMT) of intestinal epithelial cells using Caco-2 cells (IEC), both being processes induced by transforming growth factor-ß1 (TGF-ß1). The drugs tested included mesalamine, azathioprine, methotrexate, prednisone, methylprednisolone, budesonide, infliximab, and adalimumab. The expression of fibrosis and EMT markers (collagen-I, α-SMA, pSmad2/3, occludin) was assessed by Western blot analysis and by immunofluorescence. Of the drugs used, only prednisone, methylprednisolone, budesonide, and adalimumab were able to antagonize the pro-fibrotic effects induced by TGF-ß1 on CCD-18Co cells, reducing the fibrosis marker expression. Methylprednisolone, budesonide, and adalimumab were also able to significantly counteract the TGF-ß1-induced EMT process on Caco-2 IEC by increasing occludin and decreasing α-SMA expression. This is the first study that evaluates, using in vitro cellular models, the direct antifibrotic effects of drugs currently used in IBD, highlighting which drugs have potential antifibrotic effects.
Assuntos
Budesonida , Transição Epitelial-Mesenquimal , Fibrose , Doenças Inflamatórias Intestinais , Fator de Crescimento Transformador beta1 , Humanos , Células CACO-2 , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Budesonida/farmacologia , Adalimumab/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Metilprednisolona/farmacologia , Mesalamina/farmacologia , Prednisona/farmacologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Anti-Inflamatórios/farmacologia , Infliximab/farmacologia , Infliximab/uso terapêutico , Azatioprina/farmacologia , Metotrexato/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Diferenciação Celular/efeitos dos fármacosRESUMO
Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of profibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMCs). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends toward normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.NEW & NOTEWORTHY We found that CTGF expression increased significantly not only in the inflammation site but in the distended segment proximal to inflammation in a rodent model of CD-like colitis. Release of mechanical distention prevented CTGF expression in CD rats, whereas direct stretch induced CTGF expression. Treatment with anti-CTGF antibody reduced fibrosis and collagen contents in CD rats. Thus, mechanical stress, via upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.
Assuntos
Fator de Crescimento do Tecido Conjuntivo , Doença de Crohn , Fibrose , Ratos Sprague-Dawley , Estresse Mecânico , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Ratos , Masculino , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Ácido Trinitrobenzenossulfônico , Colágeno/metabolismoRESUMO
BACKGROUND: The therapeutic potential of adipose-derived mesenchymal stromal cells (AMSCs) in the treatment of intestinal fibrosis occured in patients with Crohn's disease (CD) remains unclear. Tumor necrosis factor-stimulated gene 6 (TSG6) protein plays a critical role in inflammation regulation and tissue repair. This study aimed to determine if AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein and explore the underlying mechanisms. METHODS: Two murine models for intestinal fibrosis were established using 2,4,6-trinitrobenzene sulfonic acid in BALB/c mice and dextran sulfate sodium in C57BL/6 mice. Primary human fibroblasts and CCD-18co cells were incubated with transforming growth factor (TGF)-ß1 to build two fibrosis cell models in vitro. RESULTS: Intraperitoneally administered AMSCs attenuated intestinal fibrosis in the two murine models, as evidenced by significant alleviation of colon shortening, collagen protein deposits, and submucosal thickening, and also decrease in the endoscopic and fibrosis scores (P < 0.001). Although intraperitoneally injected AMSCs did not migrate to the colon lesions, high levels of TSG6 expression and secretion were noticed both in vivo and in vitro. Similar to the role of AMSCs, injection of recombinant human TSG6 attenuated intestinal fibrosis in the mouse models, which was not observed with the administration of AMSCs with TSG6 knockdown or TSG6 neutralizing antibody. Mechanistically, TSG6 alleviates TGF-ß1-stimulated upregulation of α-smooth muscle actin (αSMA) and collagen I by inhibiting Smad2 phosphorylation. Furthermore, the expression of TSG6 is lower in intestinal fibrosis tissue of patients with Crohn's disease and can reduce pro-fibrotic protein (αSMA) secretion from primary ileal fibrotic tissue. CONCLUSIONS: AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein, which inhibits Smad2 phosphorylation. TSG6, a novel anti-fibrotic factor, could potentially improve intestinal fibrosis treatments.
Assuntos
Moléculas de Adesão Celular , Doença de Crohn , Modelos Animais de Doenças , Fibrose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Smad2 , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Doença de Crohn/terapia , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Camundongos , Proteína Smad2/metabolismo , Masculino , Sulfato de Dextrana , Ácido Trinitrobenzenossulfônico , Tecido Adiposo/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente , Colite/terapia , Colite/patologiaRESUMO
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Assuntos
Biomarcadores , Doença de Crohn , Fibrose , Doença de Crohn/diagnóstico , Doença de Crohn/patologia , Humanos , Intestinos/patologia , MicroRNAs/genéticaRESUMO
BACKGROUND: Intestinal fibrosis, a complex complication of colitis, is characterized by excessive extracellular matrix (ECM) deposition. Estrogen receptor (ER) ß may play a role in regulating this process. METHODS: Intestinal tissue samples from stenotic and nonstenotic regions were collected from Crohn's disease (CD) patients. RNA sequencing was conducted on a mouse model to identify differentially expressed mRNAs. Histological, immunohistochemical, and semiquantitative Western blotting analyses were employed to assess ECM deposition and fibrosis. The roles of relevant pathways in fibroblast transdifferentiation, activity, and migration were examined. RESULTS: Estrogen receptor ß expression was found to be downregulated in the stenotic intestinal tissue of CD patients. Histological fibrosis score, collagen deposition, and profibrotic molecules in the colon of an intestinal fibrosis mouse model were significantly decreased after activation of ERß. In vitro, ERß activation alleviated transforming growth factor (TGF)-ß-induced fibroblast activation and migration, as evidenced by the inhibition of col1α1, fibronectin, α-smooth muscle actin (α-SMA), collagen I, and N-cadherin expression. RNA sequencing showed that ERß activation affected the expression of genes involved in ECM homeostasis and tissue remodeling. Enrichment analysis of differentially expressed genes highlighted that the downregulated genes were enriched in ECM-receptor interaction, TGF-ß signaling, and Toll-like receptor (TLR) signaling. Western blotting confirmed the involvement of TGF-ß/Smad and TLR4/MyD88/NF-κB signaling pathways in modulating fibrosis both in vivo and in vitro. The promoter activity of TGF-ß1 and TLR4 could be suppressed by ERß transcription factor. CONCLUSION: Estrogen receptor ß may regulate intestinal fibrosis through modulation of the TGF-ß/Smad and TLR4/MyD88/NF-κB signaling pathways. Targeting ERß activation could be a promising therapeutic strategy for treating intestinal fibrosis.
Imagine your gut is like a garden hose. In Crohn's disease, parts of this "hose" get narrow and blocked. Scientists found less of a helpful protein, ERß, in these narrow areas. In an experiment with mice, boosting ERß lessened the gut damage and reduced the buildup of collagenthe "blockage" in our hose analogy. Also, ERß calmed overactive cells causing these issues, acting like a peacemaker. This protein "talks" to cells through channels called TGF-ß/Smad and TLR4/NF-κB, telling them to relax. This could be a new way to tackle such gut problems!
RESUMO
Background: Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn's Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear. Purpose: The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches - encompassing network pharmacology and molecular docking - complemented by experimental validation. Methods: To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-ß1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-ß1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining. Results: Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro. Conclusion: Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-ß1/Smad signaling pathway.
Assuntos
Doença de Crohn , Medicamentos de Ervas Chinesas , Fibrose , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Fibrose/tratamento farmacológico , Camundongos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Ratos , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Modelos Animais de DoençasRESUMO
Intestinal fibrosis is a common complication of chronic intestinal diseases with the characteristics of fibroblast proliferation and extracellular matrix deposition after chronic inflammation, leading to lumen narrowing, structural and functional damage to the intestines, and life inconvenience for the patients. However, anti-inflammatory drugs are currently generally not effective in overcoming intestinal fibrosis making surgery the main treatment method. The development of intestinal fibrosis is a slow process and its onset may be the result of the combined action of inflammatory cells, local cytokines, and intestinal stromal cells. The aim of this study is to elucidate the pathogenesis [e.g., extracellular matrix (ECM), cytokines and chemokines, epithelial-mesenchymal transition (EMT), differentiation of fibroblast to myofibroblast and intestinal microbiota] underlying the development of intestinal fibrosis and to explore therapeutic advances (such as regulating ECM, cytokines, chemokines, EMT, differentiation of fibroblast to myofibroblast and targeting TGF-ß) based on the pathogenesis in order to gain new insights into the prevention and treatment of intestinal fibrosis.
RESUMO
Introduction: Crohn's disease (CD) is a chronic inflammatory disease. Approximately 50% of patients with CD progressed from inflammation to fibrosis. Currently, there are no effective drugs for treating intestinal fibrosis. Biologic therapies for CD such as ustekinumab have benefited patients; however, up to 30% of patients with CD have no response to initial treatment, and the effect of ustekinumab on intestinal fibrosis is still uncertain. Therefore, it is of great significance to explore the predictive factors of ustekinumab treatment response and the effect of ustekinumab on intestinal fibrosis. Materials and methods: Public datasets-GSE207465 (blood samples) and GSE112366 and GSE207022 (intestinal samples)-were downloaded and analyzed individually (unmerged) based on the treatment response. Differentially expressed genes (DEGs) were identified by the "limma" R package and changes in immune cell infiltration were determined by the "CIBERSORT" R package in both blood and intestinal samples at week 0 (before treatment). To find predictive factors of ustekinumab treatment response, the weighted gene co-expression network analysis (WGCNA) R package was used to identify hub genes in GSE112366. Hub genes were then verified in GSE207022, and a prediction model was built by random forest algorithm. Furthermore, fibrosis-related gene changes were analyzed in ileal samples before and after treatment with ustekinumab. Results: (1) Our analysis found that MUC1, DUOX2, LCN2, and PDZK1IP1 were hub genes in GSE112366. GSE207022 revealed that MUC1 (AUC:0.761), LCN2 (AUC:0.79), and PDZK1IP1 (AUC:0.731) were also lower in the response group. Moreover, the random forest model was shown to have strong predictive capabilities in identifying responders (AUC = 0.875). To explore the relationship between intestinal tissue and blood, we found that ITGA4 had lower expression in the intestinal and blood samples of responders. The expression of IL18R1 is also lower in responders' intestines. IL18, the ligand of IL18R1, was also found to have lower expression in the blood samples from responders vs. non-responders. (2) GSE112366 revealed a significant decrease in fibrosis-related module genes (COL4A1, TUBB6, IFITM2, SERPING1, DRAM1, NAMPT, MMP1, ZEB2, ICAM1, PFKFB3, and ACTA2) and fibrosis-related pathways (ECM-receptor interaction and PI3K-AKT pathways) after ustekinumab treatment. Conclusion: MUC1, LCN2, and PDZK1IP1 were identified as hub genes in intestinal samples, with lower expression indicating a positive prediction of ustekinumab treatment response. Moreover, ITGA4 and IL18/IL18R1 may be involved in the treatment response in blood and intestinal samples. Finally, ustekinumab treatment was shown to significantly alter fibrotic genes and pathways.
Assuntos
Doença de Crohn , Fibrose , Ustekinumab , Ustekinumab/uso terapêutico , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Transcriptoma , Resultado do Tratamento , Mapas de Interação de ProteínasRESUMO
Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.
Assuntos
Colite , Vesículas Extracelulares , Faecalibacterium prausnitzii , Fibrose , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Faecalibacterium prausnitzii/metabolismo , Camundongos , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Colite/induzido quimicamente , Masculino , Sulfato de Dextrana , Intestinos/patologia , Doença Crônica , Reprogramação MetabólicaRESUMO
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-ß, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Assuntos
Doença de Crohn , Fibrose , Microbioma Gastrointestinal , Humanos , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Doença de Crohn/terapia , Animais , Matriz Extracelular/metabolismo , Biomarcadores , Citocinas/metabolismoRESUMO
Small bowel strictures remain a debilitating consequence of Crohn's disease and contribute to poor outcomes for patients. Recently, TGFß has been identified as an important driver of intestinal fibrosis. We studied the localization of TGFß isoforms in ileal strictures of patients with Crohn's disease using in situ hybridization to understand TGFß's role in stricture formation. The mucosa of strictures was characterized by higher TGFß1 while the stricture submucosa showed higher TGFß3 compared to normal ileum from patients without Crohn's disease (p = 0.02 and p = 0.044, respectively). We correlated these findings with single-cell transcriptomics which demonstrated that TGFß3 transcripts overall are very rare, which may partially explain why its role in intestinal fibrosis has remained unclear to date. There were no significant differences in fibroblast or B cell TGFß1 and/or TGFß3 expression in inflamed vs. noninflamed ileum. We discuss the implications of these findings for therapeutic development strategies to treat patients with fibrostenotic Crohn's disease.
Assuntos
Doença de Crohn , Fibrose , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta3 , Humanos , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Doença de Crohn/complicações , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Constrição Patológica/metabolismo , Fibrose/metabolismo , Masculino , Feminino , Adulto , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Pessoa de Meia-Idade , Íleo/metabolismo , Íleo/patologiaRESUMO
Intestinal fibrosis is a common complication of Crohn's disease and characterized by excessive extracellular matrix (ECM) deposition. The aryl hydrocarbon receptor (AhR) detects micronutrients and microbial metabolites in diet and can attenuate intestinal fibrosis with unclear mechanisms. In this study, AhR activation was demonstrated to downregulate the transcription of collagen I and fibronectin in a Sp1- but not Sp3- or AP-1-dependent manner. A suppressed fatty acid synthesis was highlighted using untargeted metabolomics analyses, and synthetic products, palmitic acid (PA), were used as the intermediary agent. After a screening study, fatty acid synthase (FASN) was identified as the main targeted protein, and AhR activation regulated "HDAC3-acetylation" signals but not glycosylation to enhance FASN degradation. Furthermore, results of bioinformatics analysis and others showed that after being activated, AhR targeted miR-193a-3p to control HDAC3 transcription. Collectively, AhR activation inhibited ECM deposition and alleviated intestinal fibrosis by limiting fatty acid synthesis subsequent to the inhibition of "miR-193a-3p-HDAC3-FASN" signals.
Assuntos
Ácidos Graxos , Fibrose , Histona Desacetilases , Intestinos , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Masculino , Camundongos , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácidos Graxos/metabolismo , Fibrose/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de SinaisRESUMO
BACKGROUND AND AIMS: TGF-ß1 induces epithelial-mesenchymal transition (EMT) and leads to intestinal fibrosis in ulcerative colitis (UC). We aimed to investigate the expression of transcribed ultraconserved region uc.290 in chronic UC and its role in intestinal fibrosis. METHODS: Colon specimens were taken from thirty chronic active UC, chronic inactive UC and healthy controls respectively. Modified Mayo score, expressions of uc.290, TGF-ß1, EMT biomarkers (Vimentin, α-SMA and E-cadherin) and intestinal fibrosis biomarker (collagen â ¢) in colon biopsy specimens were determined in human. Expressions of TGF-ß1, EMT biomarkers and collagen â ¢ were determined in uc.290 overexpressed or silenced epithelial colon cells (HT29). RESULTS: Uc.290, TGF-ß1 and collagen â ¢ were overexpressed, and EMT was prominent in chronic active UC. Uc.290 level had a positive correlation with modified Mayo score in chronic active UC. TGF-ß1 and collagen â ¢ were overexpressed, and EMT was prominent in uc.290 overexpressed HT29 cells. CONCLUSIONS: Uc.290 was overexpressed in chronic active UC and might promote intestinal fibrosis by TGF-ß1/EMT/collagen â ¢ pathway.
Assuntos
Colite Ulcerativa , Transição Epitelial-Mesenquimal , Fibrose , Mucosa Intestinal , Fator de Crescimento Transformador beta1 , Humanos , Colite Ulcerativa/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Masculino , Transição Epitelial-Mesenquimal/genética , Feminino , Adulto , Estudos de Casos e Controles , Pessoa de Meia-Idade , Colo/patologia , Colo/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Doença Crônica , Caderinas/metabolismo , Caderinas/genética , Células HT29 , Biomarcadores/metabolismo , Vimentina/metabolismoRESUMO
INTRODUCTION: Crohn's Disease (CD) is a chronic inflammatory condition characterized by intestinal fibrosis, severely impacting patient quality of life. The molecular mechanisms driving this fibrosis remain inadequately understood. Recent evidence implicates mesenteric adipose tissue (MAT) in CD pathogenesis, particularly through its exosome secretion, which may influence fibrogenic pathways. Understanding the role of MAT-derived exosomes is crucial for unraveling these molecular processes. OBJECTIVES: This study aims to elucidate the role of MAT-derived exosomes in CD-related intestinal fibrosis. We focus on investigating their molecular composition and the potential impact on fibrosis progression, with an emphasis on identifying novel therapeutic targets. METHODS: We induced chronic intestinal inflammation in mice using dinitrobenzene sulfonic acid (DNBS), simulating CD-like fibrosis. Exosomes were isolated from DNBS-treated mice (MG) and normal controls (NG) for characterization using electron microscopy and proteomic analysis. Additionally, human colonic fibroblasts were exposed to exosomes from CD patients and healthy individuals, with subsequent assessment of fibrogenesis through proteomic and RNA sequencing analyses. RESULTS: Proteomic analyses revealed a significant activation of the TGF-ß signaling pathway in MG-treated mice compared to controls, correlating with enhanced intestinal fibrosis. In vitro experiments demonstrated that colonic fibroblasts exposed to CD patient-derived exosomes exhibited increased fibrogenic activity. Protein docking and co-immunoprecipitation studies suggested a critical interaction between TINAGL1 and SMAD4, enhancing fibrosis. Importantly, in vivo experiments corroborated that recombinant TINAGL1 protein exacerbated DNBS-induced intestinal fibrosis. CONCLUSION: Our findings highlight the pivotal role of MAT-derived exosomes, particularly those carrying TINAGL1, in the progression of intestinal fibrosis in CD. The involvement of the TGF-ß signaling pathway, especially the SMAD4 protein, offers new insights into the molecular mechanisms of CD-related fibrosis and presents potential targets for therapeutic intervention.
RESUMO
BACKGROUND: Excessive activation of colonic fibroblasts and differentiation of T helper 17 (Th17) cells are the key steps for intestinal fibrogenesis in the process of inflammatory bowel disease (IBD). Although both transforming growth factor-beta (TGF-ß)/Mothers Against Decapentaplegic Homolog (SMAD) 3-induced fibroblasts activation and interleukin (IL)-6/signal transducer and activator of transcription (STAT) 3-induced Th17 differentiation have been well studied, the crosstalk between fibroblasts and Th17 cells in the process of intestinal fibrogenesis needs to be unveiled. METHODS: In this study, the activation of colonic fibroblasts was induced with dextran sulfate sodium salt (DSS) and TGF-ß in vivo and in vitro respectively. P-SMAD3 and its downstream targets were quantified using RT-PCR, western blot and immunofluorescence. The differentiation of programmed death 1 (PD-1) + Th17 and activation of fibroblasts were quantified by FACS. PD-1+ Th17 cells and fibroblasts were co-cultured and cytokines in the supernatant were tested by ELISA. The anti-fibrosis effects of different chemical compounds were validated in vitro and further confirmed in vivo. RESULTS: The colonic fibroblasts were successfully activated by DSS and TGF-ß in vivo and in vitro respectively, as activation markers of fibroblasts (p-SMAD3 and its downstream targets such as Acta2, Col1a1 and Ctgf) were significantly increased. The activated fibroblasts produced more IL-6 compared with their inactivated counterparts in vivo and in vitro. The proinflammatory cytokine IL-6 induced PD-1+ Th17 differentiation and TGF-ß that in return promoted the activation of colonic fibroblasts. Fraxinellone inhibited TGF-ß+ PD-1+ Th17 cells via deactivating STAT3. CONCLUSIONS: The reciprocal stimulation constructed a circuit of PD-1+ Th17 cells and fibroblasts that accelerated the fibrosis process. Fraxinellone was selected as the potential inhibitor of the circuit of PD-1+ Th17 cells and fibroblasts in vivo and in vitro. Inhibiting the circuit of PD-1+ Th17 cells and fibroblasts could be a promising strategy to alleviate intestinal fibrosis.